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Chapter 1

Introduction

1.1 Turbulent flows

Turbulent flow or, simply, turbulence is associated with the unpredictable, chaotic
and highly fluctuating motion observed in air, water and many other gasses and
liquids. In day to day life we observe turbulent phenomena when rigorously stirring
a cup of tea, in the air we see the white vapor trails formed behind an airplane
and we see many different turbulent structures in the flow around a large stone in
a fast mountain stream. Numerous other examples of turbulent flow can be given
and some are shown in figure 1.1.

Aside to drawing attention by its fascinating appearance, a lot of practical interest
exists in turbulent flows. In many flows encountered in industry, weather prediction
and aerodynamics, turbulent phenomena are observed. Important examples are the
transition to turbulence in pipe flows, the increased drag due to turbulence in flows
around airplanes and ships and the use of turbulence to increase mixing in chemical
applications [48, 98, 102, 107]. Therefore, intensive research is carried out in order
to predict, understand and possibly control turbulence.

In turbulence research one can distinguish three different approaches: the the-
oretical, the experimental and the numerical approach. These approaches work
complementary to each other as each approach has certain limitations in terms of
accuracy, resolution and/or the range of flows which can be studied. Theoretical
predictions generally provide an accurate description of flows, e.g., in terms of av-
eraged quantities, but are only available for a few turbulent flows [36, 98, 102].
Therefore, for most turbulent flows researchers rely on results acquired by experi-
mental and/or numerical means.

Experimental results are available for many turbulent flows, but are generally lim-
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14 Chapter 1. Introduction

Figure 1.1: Two examples of turbulent flow a) Von Kdrmén vortices in the clouds
around the Galapagos islands (www.earthobservatory.nasa.gov) b) Turbulent vor-
tices in the flow around a delta-wing at Re. = 200,000 [105].

ited in terms of accuracy and resolution. Most measuring techniques only produce
data for a small part of the flow domain and often measuring devices are intrusive
such that they interfere with the actual flow. Next to these limitations, exper-
iments typically require a huge amount of space, time and money and lack the
flexibility of immediately studying the effect of minor changes to a design.

The third approach is the numerical or computational approach. In this approach
it is tried to compute the turbulent flow, e.g., using (super)computers [94, 96]. An
example of a turbulent flow computed numerically is given in figure 1.2. Numerical
simulations have the advantage over experiments that no expensive wind tunnel
testing is needed, no scale models have to be produced and information about the
flow field is available throughout the domain without the interference of measuring
equipment. Moreover, with the developments in computer technology over the past
50 years the possibilities of using numerical methods when investigating turbulent
flow have greatly increased.

Simultaneously, this has drawn an increased attention into the development of
numerical methods exploiting these improvements in computer speed, computer
memory and disk storage. Faster numerical methods have emerged as have methods
which can efficiently deal with the complex geometries observed in many flows
such as the wing of an airplane up to the swirling blades in a gas turbine. Such
type of methods allow more and more complex, turbulent flows to be computed
numerically.

The major problem, however, when investigating any turbulent flow by numerical
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Figure 1.2: Example of numerically simulated turbulent flow: iso-surfaces of the
vorticity ws = OQug/dx1 — Ouy/dze in a spatially evolving mixing layer; blue:
wz = —0.05, red: w3 = 0.05.

means is that only a limited range of “turbulence” in a flow can be accurately com-
puted. The “turbulence” in a flow is expressed in terms of the so-called Reynolds
number, which is given by,

LocUss

Voo

Re =

(1.1)

Here L., Uy and v are a reference length, velocity and kinematic viscosity,
respectively. These reference variables can be chosen for each specific flow. For
the majority of flows a critical Reynolds number exists above which the flow is
regarded turbulent. Consequently, by increasing the Reynolds number Re a flow
will become turbulent when this critical Reynolds number is reached. The main
problem which restricts the range of applicability when investigating turbulent
flow by numerical means is that there also exists a critical Reynolds number above
which the flow can no longer be accurately computed within an acceptable amount
of time given present day computer speed and memory.

This thesis contributes to the research into turbulent flow in complex geometries
by numerical means, in which we use a powerful simulation technique for turbulent
flow called Large-Eddy Simulation (LES) [48, 91] in combination with a versatile
method of discretization called the Discontinuous Galerkin Finite Element Method
(DG-FEM) [5, 75, 130]. DG-FEM is a numerical method that is well suited to be
used in complex flow geometries. By combining these two methods we expect that
complex, turbulent flows at high Reynolds number can be computed by numerical
means in the near future.

In the remainder of this introduction we first discuss the typical problems which are
encountered when numerically simulating a (complex) turbulent flow and explain
the basic idea behind LES. Then the two main aspects on which the research has
been focused are introduced: i) the use of non-uniform grids and filters in LES
[46, 51, 54] and ) the use of LES in combination with a discretization based on
DG-FEM [24, 25]. At the end of this introduction an overview is given of all
chapters within this thesis.
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1.2 Numerical simulation of turbulent flow

In a turbulent flow one can find a broad range of length scales and computing each
of these distinct length scales requires a tremendous amount of computer resources.
Moreover, the higher the Reynolds number, the broader the range of length scales
that is encountered and the more computer resources are needed. To partially
alleviate the problem, reduced flow simulation techniques such as LES are used to
simulate turbulent flow at high Reynolds number.

The presence of a wide range of distinct length scales can in general directly be
observed in a turbulent flow. For example in the flow shown in figure 1.1(a) the
diameter of the largest structures observed is on the order of the diameter of
the Galapagos islands, approximately 80 km, which are hidden in the lower left
corner of this figure. But in the inset of this figure we observe that such a large-
scale structure contains many other structures with different, smaller length-scales,
which contain even smaller structures, etcetera. The presence of such a broad range
of different length-scales is characteristic for a turbulent flow [98, 102].

All the flow-structures within in a turbulent flow can be divided into three dif-
ferent regimes depending on their typical length. These are the large-scale, the
intermediate and the viscous or small-scale subrange [98, 102]. The large-scale
subrange contains all flow structures with a typical length of approximately L
and larger while the viscous subrange contains the smallest flow-structures present
in a turbulent flow with a length-scale of  and smaller. This length-scale 7 is
referred to as the Kolmogorov length-scale. The intermediate subrange contains
all flow-structures whose length-scale are in between 1 and L,. The ratio between
n and Lo, for isotropic turbulence is related to the Reynolds number by [98, 102],
Lo | Res/t. (1.2)
n
This relation makes clear that the larger the Reynolds number, the larger is the
difference between L., and n and the more length-scales are present in a turbulent
flow that need to be computed in a numerical simulation of turbulent flow.

By the work of Richardson (1926) and Kolmogorov (1941) the dynamical behavior
of these three different subranges with respect to the kinetic energy is reasonably
well understood and has been observed in many different turbulent flows [102]. In
a turbulent flow mainly large-scale flow features are affected by external sources
such as inflows and outflows, objects in a flow, external forces, etc. Flow features
with length-scales in the intermediate and viscous subrange have fairly universal
behavior and are largely unaffected by external sources. In the intermediate sub-
range flow structures are broken up into smaller and smaller structures until these
structures are so small that they are dissipated by viscous effects in the viscous
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Figure 1.3: a) Spectrum of length-scales encountered in a turbulent flow divided
into the large, intermediate and small scale subrange. b) Spectrum of length-
scales as they are considered in LES of turbulent flow. In these figure L is the
reference length, 7 is the Kolmogorov length-scale and A is the filter-width.

subrange.

Most of the kinetic energy is injected into the flow at the large scales. Then, in
the process of flow structures being broken up into smaller structures, this kinetic
energy is transported to the smaller scales, but kinetic energy is only dissipated at
length-scales below the Kolmogorov length-scale 7. In the intermediate subrange,
almost no kinetic energy is dissipated, such that on average the kinetic energy is
only transported through this range of scales. A sketch of this process is shown in
figure 1.3(a).

Expression (1.2) and the sketch shown in figure 1.3(a) provide the background
to understand the limitations of numerical simulations of turbulent flow and to
motivate the Large-Eddy Simulation technique used in this thesis. More elaborate
introductions into the theoretical aspects of turbulent flow, as well as experimental
and numerical results which confirm this view, can be found in the many textbooks
available (e.g., Nieuwstadt [98] and Pope [102]).

In order to accurately simulate a turbulent flow at high Reynolds number all of
the length-scales present in the flow need to be computed. A numerical simulation
in which all length-scales, from the largest Lo, up to the smallest length-scale 7,
are computed is referred to as a Direct Numerical Simulation (DNS). In such a
simulation a grid is used whose typical grid length h is on the order of 7, such
that the number of grid points N, needed in a DNS is approximately given by
(Loo/h)3. Hence the number of grid-points in terms of the Reynolds number Re is
approximately given by [98],

L.o\3 L.o\3

N, = (;’O) ~ (;’O) ~ Re%/4, (1.3)
h 7

This relation reveals that the computational cost of a numerical simulation, in

terms of number of grid points needed, scales with Re%* for three-dimensional,

turbulent flow. Therefore, doubling the Reynolds number results in a computation
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Figure 1.4: Turbulent, filtered and unresolved signal

which is approximately 5 times more grid-points.

To explain the practical consequences of relation (1.3) consider the following ex-
ample. A well known aerodynamic flow is the flow over a delta-wing, as shown
in figure 1.1(b) [63, 105]. Presently the highest Reynolds number reported in lit-
erature for such a flow is on the order of 10* [55, 63, 75] and such computations
take a considerable amount of time, on the order of days up to several weeks. For
relevant flow an increase in terms of the Reynolds number of by a factor of 100 [94]
is required which results in a computation that would take many years to complete
which is far beyond acceptable.

To remedy this problem researchers rely on so called reduced flow simulation tech-
niques when simulating turbulent flow at high Reynolds number. In a reduced
flow simulation technique not all turbulent flow features are computed. Only flow
scales up to a typical length A > n are computed and consequently one is allowed
to use a considerably coarser grid resulting in a cheaper computation. This process
is sketched in figure 1.3(b). As can be seen only the large scales and part of the
intermediate subrange are computed. The remainder of the intermediate and the
complete viscous subrange are not computed.

Reduced flow simulation techniques generally involve some modeling aspect in
order to account for the dynamical effect of the unresolved scales. For example,
as shown in figure 1.3(b), the process of transporting kinetic energy through the
intermediate subrange is disturbed as only part of the intermediate subrange is
computed. A model is needed to restore this process. Over the years a number of
reduced flow simulation techniques have been developed amongst which Reynolds
Averaged Navier-Stokes (RANS) and Large-Eddy Simulation (LES) are the best
known.

1.3 Large Eddy Simulation

In LES flow variables like the velocity u are divided into a resolved u and an
unresolved part u' = u—u such that u = w+u’. The separation into resolved and
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unresolved scales is effected by a so-called filter operator £ and the resolved scales
are defined as W = £(u). The resolved scales then contain only those flow features
whose typical length-scale is larger than A > 1 and this length-scale A is referred
to as the filter-width. In figure 1.4 an example is given in which a “turbulent”
signal is decomposed into a resolved and unresolved part using such a filter. As
can be observed after the application of the filter-operator a much smoother signal
remains capturing the large scale features of the original turbulent signal.

By only computing length-scales larger than the filter-width A, one is allowed to
use a grid with a typical grid-length h on the order of A > 7. Typical filter-
width over grid-ratios » = A/h that are encountered in LES are 1 or 2, such that
approximately (Lo,/A)? grid-points are needed in an LES. This is considerably
lower than the (Lo /n)% grid-points needed in a DNS, which is the main virtue of
LES [112].

As only the resolved scales are computed different equations are used in LES,
compared to DNS. The equations which govern the evolution in time of resolved
variables, as the resolved velocity u(z,t), can be arrived at by applying the filter
operator £ to the Navier Stokes equations which govern turbulent flow. In the
resulting filtered Navier-Stokes equations, so-called Sub-Grid-Scale (SGS)-terms
are encountered. These SGS-terms represent the dynamic effect of the unresolved
flow-scales onto the resolved scales.

SGS-terms are dependent on both resolved @ and unresolved variables u’ and the
most important of these SGS-terms is the SGS-stress 7;; which is given by,

mj(@ W) = Wy —uw; = g 4w+ g 4w -y, i, =1,2,3.(1.4)
Here u; denotes the velocity in the i-th Cartesian direction. It has been observed
that the dynamic effects of the unresolved scales onto the resolved scales cannot
be neglected in case A > n [48] and models m(T) need to be introduced for these
SGS-terms to account for these dynamic effects. These models m(T) can only

depend on resolved variables as only these are available during computation.

Over the years several models have been developed. Well known examples are the
Smagorinsky model [111, 112], the Bardina or scale-similarity model [7], the Clark
or gradient model [23] as well as various mixed formulations of these models [141].
LES in which these models have been used already showed considerably improved
predictions of important flow features compared to the case in which no model
was adopted [141]. For an extensive discussion regarding the many different SGS-
models used in LES the reader is referred to Meneveau and Katz [91] or to the
textbooks by Geurts [48] and Sagaut [107].

Most of the simulations mentioned above have been carried out on relatively simple
flows with simple geometries and have shown the potential of LES. Presently LES
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is used in flows as encountered in practical applications. There so-called “complex
flows” are encountered: flows with complex geometries, moving and oscillating
boundaries, inflows and outflows, etc. The main aim of this thesis is to contribute
to the application of LES to such complex flows using a method of discretization
which is well suited to be used in complex flows. A number of complications occur
when one extends LES to such flows. In this thesis we mainly focus on two types
of such complications. These are:

i) The use of non-uniform grids h(x) and non-uniform filter-widths A(x) in
LES.

i1) The use of LES in combination with a discretization based on the Discontin-
uous Galerkin Finite Element Method (DG-FEM).

These two problems make up the main content of this thesis and we will further
elaborate upon them next.

1.4 Large Eddy Simulation of complex flows

1.4.1 Non-uniform filter-width and grids in LES

The first main topic in this thesis is related to the fact that in many practical
situations the flow is turbulent in a small part of the flow-domain. Therefore one
typically encounters a grid with a non-uniform mesh size h(x). An example is given
in figure 1.5. The use of a non-uniform grid is beneficial as it allows one to compute
turbulent structures in greater detail in those parts of the domain where the flow is
turbulent. Flow structures which are in a laminar, i.e. not turbulent, flow regime
are then computed at a considerably coarser, thus cheaper, grid resolution. For
example in figure 1.5 a fine grid is used only in regions close to turbulent vortical
structures depicted in this figure.

Regarding LES, the use of a non-uniform mesh size h(x) preferably involves the
use of a non-uniform filter-width, i.e., a filter-width which is dependent on space
A(x) [48, 54]. Tt has already been known for a long time that with the introduction
of a non-uniform filter-width A(x) additional SGS-terms are introduced, generally
referred to as commutator errors [47, 51, 54]. These commutator errors emerge from
the fact that the filtering operations - and the differential operations 0/0x; can no
longer be interchanged when a non-uniform filter-width is used. The commutator
error for the velocity field u; is given by,

. BIET / f— J— e S A —
Cj [UZ](IL v ) 8.’Ej 8$j 6xj 8iL‘j ) (1'5)
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Figure 1.5: Example of a non-uniform grid used in the simulation of complex
flows. Shown are the iso-surface of the vorticity magnitude w? = 1 at ¢t = 30.0
in a simulation of two counter-rotation vortices (vortex-pair). The two slices give
an impression of the grid which is refined around the regions with high vorticity.

The commutator error problem is analyzed in two different ways. The first is based
on the following scaling estimate of the commutator error which is arrived at using
a straightforward calculation [54, 52, 51, 44],

%AN—{

Cjlu;] ~ -
J

(1.6)
Here N denotes the so-called order of the filter-operator £ which for most filters is
equal to 2. Relation (1.6) reveals that the dynamical importance of the commutator
error is expected to scale with i) the magnitude of the non-uniformity expressed in
terms of the derivative of the filter-width OA/Ox; and ii) the filter-width AN. In
this thesis the results are presented of an a-priori analysis using DNS-data [141]
which confirm this scaling behavior of the commutator error with both 0A/dz;
and AYN. Moreover we compared the size of the commutator error with that of the
SGS-stress (1.4) which revealed that the commutator error contributions can be
important in case 0A/dx; > 1.

Based on the simple scaling relation (1.6) extensive research has been carried out in
the past based on so-called higher order filters, i.e. filters with N > 2. In principle
the commutator error can be made arbitrary small by using an appropriate N-
th order filter as AN — 0 when N > 1 [44, 54, 122] and A < Lo,. The use
of higher-order filters in relation to the commutator error problem has, amongst
others, been proposed by Ghosal and Moin [54] and over the years a number of
realizations of such higher-order filters have been presented in literature. The first
realizations of higher-order filters are presented by Van der Ven [131] and Vasilyev
et al. [133] but were limited to indefinite domains or relatively simple geometries.
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Later, N-th order filters have been presented which could in principle be used in
arbitrary, possibly non-Cartesian, grids by, for example, Marsden et al. [87] and
Haselbacher and Vasilyev [64].

Already in an early paper by Geurts et al. [51] it was pointed out that not only
the commutator error, but all SGS-terms could be made arbitrarily small with the
application of a higher order filter. For example for an N-th order filter the SGS-
stress scales with 7;; ~ AN [44]. In our a-priori analysis we verified the scaling
behavior with the order of the filter for both the SGS-stress and commutator error
which led to the conclusion that the use of higher-order filters does not lead to an
independent control of the commutator error.

The second way we discuss the commutator error is by investigating it’s Lagrangian
nature. This is a novel approach towards the commutator error problem in which
it is argued that the effect of the commutator error is highly dependent on the
material derivative D; of the filter-width;

OA _ 0A

E + U 8—113] .
Consequently commutator error effects are expected only if the flow is directed
towards the filter-width non-uniformity. A priori analysis using DNS-data was used
to investigate this behavior. Specifically we considered the Lagrangian behavior of
the commutator error for the transport of kinetic energy and showed that it could
be well parameterized in terms of the material derivative of the filter width D;A.

DA = (1.7)

1.4.2 Numerical methods in LES

The use of LES in complex flows in which we encounter non-uniform grids, moving
boundaries etc. requires a numerical method which can deal with a non-uniform
and deforming grid. Many different numerical methods have been developed over
the years and not all numerical methods are well suited to be used for such complex
flows. A numerical method which seems well suited to simulate complex flows is
DG-FEM. The distinctive aspect of DG-FEM is that higher order accuracy can be
achieved while maintaining a very localized stencil [75, 130]. Recently DG-FEM
has been applied to the Navier-Stokes equations [5, 8, 16, 75] and already several
examples exist in which DG-FEM for the full Navier-Stokes equations is used for
complex flows. Klaij et al. [75, 130] applied DG-FEM to several aerodynamic flow,
including an oscillating wing and the flow over a delta-wing at modest Reynolds
number (Re. = 40,000) and Bassi et al. [8, 10] applied DG-FEM to turbulent flow
in an engine turbine.

It should be pointed out that the method of discretization and the grid employed
are an integral part of an LES and can have a considerable influence on the accuracy
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of LES. This because when solving the discretized equations one cannot circumvent
“discretization effects”. These discretization effects typically scale with the grid-
length h and only when h < A do these discretization errors become negligible in
LES. In LES preferably a coarse grid h ~ A is used and consequently the effects
due to discretization on the LES results are comparatively large and frequently are
on the same order as the errors induced by e.g. the SGS-modeling.

It is well known that modified SGS-terms emerge if the filtering effect of the coarse-
grid discretization is incorporated into the large-eddy equations [83, 84, 106]. We
will refer to this modified closure problem as the computational turbulent stress
tensor [45, 124]. In chapter 5 it will be shown that the computational turbulent
stress tensor for compressible flow can be decomposed into of two parts: one part
primarily associated with fluctuating density and another part primarily associated
with the fluctuating velocity. Using turbulent data at various Mach numbers it will
be shown that the effect of the fluctuating density can become considerable at high,
supersonic Mach number.

Over the years several studies have been published in which it is tried to under-
stand, predict or illustrate the effect of the coarse-grid discretization and numerical
method on the LES-results [42, 46, 53, 92, 93, 101, 140]. Most of the studies into
the effect of the discretization in LES mentioned above use either Fourier-spectral
[52, 22] or Finite Difference (FD)-methods [42, 62, 92, 93, 140]. Based on these
studies some guidelines have been proposed along which for example an accept-
able filter-width to grid-ratio r = A/h are suggested. In these studies the results
of LES using different filter-width to grid-ratio’s are a-posteriori compared with
the results from a DNS. Recently this approach was further extended by Meyers,
Geurts and Baelmans [92, 93] resulting into so-called “accuracy charts”. These
“accuracy charts” are an illustrative and efficient way to process and compare the
results of many different LES using distinct numerical set-ups.

The use of LES in combination with a DG-FEM discretization is fairly new. The
first attempts in this direction have been taken in Refs. [25, 103]. DG-FEM is a
“projection” based numerical method. An alternative approach, referred to as the
Variational Multi-Scale approach to LES (VMS-LES), can be used to formulate the
LES equations at the discrete level [24, 69, 70, 71, 127]. The method of discretiza-
tion becomes an integral part of the LES-technique in VMS-LES. Particularly the
use of VMS-LES for compressible flow and the occurrence of commutator errors in
VMS-LES will be discussed in this thesis.

Another aspect of DG-FEM which is discussed in this thesis is the “numerical
dissipation” [80]. Low order DG-FEM typically possesses considerable “numerical
dissipation” which is needed for stability reasons. However, a large numerical
contribution to the total dissipation rate of kinetic energy may seriously affects
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the effectiveness of a SGS-model. Moreover in some cases it is even suggested to
let “the numerical dissipation do the job” and not to incorporate any SGS-modeling
[2, 12, 59]. In this thesis we investigate the numerical dissipation using the accuracy
charts approach of Meyers et al. [92, 93]. It will for example be shown that different
constants should be adopted in the SGS-models to gain optimal accuracy depending
on the amount of numerical dissipation introduced by the discretization.

1.5 Outline

As stated above the main emphasis in this thesis is on investigating the use of
LES in combination with DG-FEM to complex, turbulent flow. Two particular
aspects are given special attention. Firstly this is the use of non-uniform grids and
filter-widths in LES and, secondly, the use of a discretization based on DG-FEM
in LES.

Specifically we will deal with the following topics.

e Results are shown of a-priori analysis regarding the scaling estimate of the
magnitude of the commutator error (1.6) in terms of the derivative of the
filter-width A /dx; and AN,

e We will introduce and evaluate the approximate Lagrangian behavior of the
commutator error.

e We will study the computational stress tensor for compressible flow [45].

e The Variational Multi-Scale approach to LES (VMS-LES) will be introduced
and we will formulate VMS-LES for compressible flow. Also the occurrence
of commutator errors in VMS-LES will be identified.

e Results are shown of an a-posteriori investigations using “accuracy charts”
in which we illustrate and quantify the effect of numerical dissipation on the
SGS-modeling in LES.

In the final chapter we will present results of LES using DG-FEM of the flow over
a delta-wing at Re. = 100,000. These simulations allow us to assess the feasibility
of LES and DG-FEM for turbulent, aerodynamic flow.

The detailed outline of this thesis is as follows. Chapter 2 introduces the governing
equations for turbulent flow. Then, in chapter 3 and 4 the commutator error will
be discussed and results are shown of a-priori. In the following three chapters the
focus will shift to the effect of numerical methods in LES. First in chapter 5 the
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effect of a discretization is interpreted as a numerical filter and in particular we
will investigate the computational turbulent stress tensor compressible flow. In
chapter 6 an LES formulation based on the Variational Multi-Scale approach to
LES (VMS-LES) is given suitable for DG-FEM of compressible flow. In chapter 7
the effect of numerical dissipation on the LES SGS-modeling is investigated using
a data-base approach. In section 8.1 the main conclusions are drawn. Finally in
section 8.2 an outlook is given for the application of LES in combination with
DG-FEM. In particular we will discus the feasibility of LES in combination with
DG-FEM on locally refined grids. This discussion is based on an early attempt of
simulation complex, high Reynolds number flow over a delta-wing using LES and
DG-FEM.






Chapter 2

Governing equations

In this chapter we will introduce the equations which govern compressible, tur-
bulent flow (section 2.1), introduce the traditional filtering approach to LES and
discuss some popular Sub-Grid-Scale (SGS) models (section 2.2). In section 2.3 we
will introduce the DG-FEM discretization for the Navier-Stokes equations supple-
mented with a Smagorinsky SGS-model.

2.1 Navier Stokes equations for compressible flow

Compressible flow is governed by a set of five equations that together constitute the
Navier-Stokes equations. These five equations describe the conservation of mass,
momentum and energy and are given by [4, 48, 144],

Op + Ojpu; = 0, (2.1)
Orpu; + 0} (puiuj +0ijp — Jij) = 0, (2.2)
OuE + 0; (B +p)u; — oijui + ;) = 0. (2.3)

Here p is the density, u; the i-th Cartesian velocity component, F the energy
density, p the pressure, o;; the viscous stress tensor and ¢; the heat flux. Further,
d;j denotes the Kronecker delta and 0y = 0/0t and 0; = 0/0x; are short hand
notations for partial differentiation with respect to time and in the j-th Cartesian
direction, respectively. Throughout this thesis we use Einstein notation such that
summation is implied over repeated indices and vectors can be denoted by u =
U; = [ul, ug, U3].

In order to close these equations we need to specify constitutive relations for the
pressure, viscous stress tensor and the heat flux such that (2.1)-(2.3) can be fully

27
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expressed in terms of the conserved density p, momentum pu; and energy density
E [4, 48, 144]. For the pressure p we use,

p = (v = 1)(E - zpuiui), (2.4)

where v = ¢, /¢, is the ratio between the specific heats at constant volume ¢, and
at constant pressure c,. The viscous stress tensor o;; is given by,

T
oij = %Sﬁ, Sij = Ojui+ Ogu; — 50i50kur, (2.5)

where S;; is the rate-of-strain tensor, p(7°) is the dynamic viscosity and Re is the
Reynolds number which for compressible flow is given by,
Moo

Here po is the reference density, L, the reference length, U, the reference velocity,
oo the reference viscosity and koo the reference thermal conductivity. The dynamic
viscosity p(7T') is approximated using Sutherland’s law [4, 48, 144],

ﬂj"?’/?

T) = , 2.7
WT) = 6 27
and is related to the kinematic viscosity used in (1.1) by u = prv. The temperature

T is given by the ideal gas law,

T = ’yMQ% (2.8)

where M = Uy /ao denotes the Mach number expressing the ratio between the
reference velocity Uy, and reference speed of sound a. Finally the heat flux ¢; in
the energy equation is given by,

u(T) o.T,

(y — 1)RePrM?™ (2:9)

q =
where Pr = ¢pliso/Koo denotes the Prandtl number expressing the ratio between
the reference viscosity oo and thermal diffusivity constant k.

These equations have been made dimensionless using a reference length L., den-
Sity peo, velocity U, temperature T, and viscosity oo such that the following
dimensionless numbers have emerged: the Mach number M, the Prandtl number
Pr and the Reynolds number Re. Throughout this thesis various values for the
Prandtl, Mach and Reynolds number are adopted. These are given separately in
each chapter. Further, the ratio between the specific heats 7 is set to 1.4, while
for the constant C' in (2.7) the value 0.4 is used which corresponds to air at 276 K.
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Filter Filter kernel G(s) Ae
1 f—l<s—y<i
. 2 = >3
Top-hat { 0 otherwise. A
. 6 —6s2 2
Gaussian \/; e "8 \/ 6 A
in(kes) A
Spectral % ’L—C

Table 2.1: The filter-kernel G(s) and resulting effective filter-width A, (2.14) for
various popular one-dimensional filter operators. The variables A, k. and ~ are
the externally specified filter-width, cut-off wave number and skewness parameter,
respectively.

A short hand notation for equations (2.1)-(2.3) is given by,
OUa + 0;F5;(U) — 0;F5,;,(U,VU) = 0, (2.10)

where U, = [p, pu;, E] is the vector of the conserved variables and the 5 x 3 matrices
FS ; and F i entail the conservative and viscous part of the Navier-Stokes equations,
respectively. These two matrices can readily be extracted from (2.1)-(2.3) and are
given by,

pU; 0
F(U) = | puuj +pdij |,  Fy;(U,VU) = Tij S (2.11)
(E+p)u, TijUi — qj

In this short hand notation we use a particular Einstein notation [145] where Greek
indices always imply a range 0,...,4, while Latin indices imply the usual range
1,2, 3 unless otherwise noted, such that e.g. Uy = p, U; = pu; and Uy = FE.

2.2 Non uniformly filtered Navier Stokes equations

In LES a scale separation into resolved and unresolved flow features is considered
[48, 107]. This scale separation allows flow variables like the momentum to be
decomposed into a resolved pu; and an unresolved part (pu;)’ such that pu; =
pt; + (pu;)’. The resolved part primarily contains those flow-features with a typical
length-scale larger than the filter-width A [48]. In LES one aims to arrive at an
accurate prediction of the primary flow-features contained in the resolved part.

Traditionally, the resolved part of variables is determined using one dimensional
filter operators L. These filters may be used to construct product filters for the
relevant three dimensional case. At first we will restrict ourselves to this type of
filters. Using such a filter operator L the resolved part of a variable f is defined
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as,

T@) = e = [ g G(A )i (212)
oo Az, t)  \A(z,t)
Here G is referred to as the filter-kernel and A is the externally specified filter-
width which we allow to be dependent on space and/or time. A filter operator
is required to be normalized such that constant variables remain unchanged after
filtering. This implies that the filter-kernel should satisfy,

/OO G(s)ds = 1. (2.13)

Further a filter is considered ‘symmetric’ if G(s) = G(—s) and ‘skewed’ or non-
symmetric otherwise. Skewness of a filter is sometimes unavoidable in practical
situations and implies a particular ‘biasing’ of the spatial averaging which, as a
result, is no longer fully centered around the point . For example the top-hat
filter as defined in table 2.1 is skewed if v # 0 and in that case the mid-point of
the domain of integration is located at = + /2.

A filter-operator together with the externally specified filter-width A define an
effective filter-width A.. Multiple definitions exist but we adopt the following
definition which is based on the Lo-norm of the filter-kernel G/A [48, 122, 136],

At (1) = /_OO {A(;,t)G(Ay(;,f))}z dy. (2.14)

o0

In table 2.1 we have collected some well known filter-kernels GG together with their
associated effective filter-widths (2.14).

Because we allow the filter-width to be dependent on space and/or time the com-
mutation property between filtering and differentiation no longer holds [51, 52, 54],
i.e.

0o f () # 0o f(2). (2.15)

This results in a closure term known as the commutator error. In one dimension
the commutator error is defined as [52, 122, 123],

C:v(f) = 8zf_8x? = [Lvaac] (f) (2'16)

In (2.16) the commutator error C, is conveniently written in terms of the commu-
tator-bracket involving the filter operator L and the differential operator d,. In
general, the commutator-bracket of two operators, A and B, is defined as,

[A, BI(f) = Ao B(f) = Bo A(f) = A(B(f)) = B(A(f))- (2.17)
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One dimensional filtering can easily be extended to the relevant three dimensional
case by considering product filters [48, 107, 144]. A three dimensional filter-
operator L is then defined as the product of multiple one-dimensional filters, i.e.
L = LioLsoLs, where L;, together with the filter-width A; and skewness parameter
~;, constitutes the filter associated with the i-th Cartesian direction. Consequently
filtering in three dimensions is defined as [48, 107, 144],

LIf)(x) = /Q G(x,y)/(y)dy. (2.18)
where the three dimensional filter-kernel G is defined as,
2 1 Yi — X
_ (Lt 2.1
90y = N x @ (50n) (219

Here G is the filter-kernel for the filter L; corresponding to the i-th Cartesian
direction.

Traditional filtering is, however, only one of the ways to arrive at a separation into
resolved and unresolved scales. Another class of filters considered in this thesis
are projective filters. Such filters are typically encountered in case the resolved
variables are be expressed in terms of a finite number N, of basis-functions ¢;,
i=0,...,Ny—1,

Fox) = > fio(). (2.20)

Here ¢; are basis-functions and the constants fz are referred to as the expansion co-
efficients. These expansion coefficients are generally defined using an Lo-projection
such that,

Ny—1
P -1 .
fi Z-;OM” /Qf(.Y)QbJ(Y)dy? (2:21)
and
Ny—1
Fx) = PG = 3 M /Q F(3)65(y) dy é1(x). (2.22)
1,7=0

Here Mj;; = [, ¢i(y)¢;(y) dy is the mass-matrix which reduces to a diagonal matrix
in case the basis-functions ¢; are mutually orthogonal. A special property of the Lo-
projection filter, as defined above, is that it can be casted in the form as presented
in (2.18). The filter-kernel G is then given by [135],

Gx.y) = S M 6i(x)0,(y). (223)
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Equation Compressible SGS-terms | Commutator errors
Continuity | - Ci(p) + Cj(puy)
Momentum | 9;p7;; Ci(pui) + Cj(puiuj)
- Ci(p)
—9;(@ij — 45) —Cj(oij)
Energy | a1 | - — 50 {Ci(p) + Cj(puy) }
Qs | w;0;pTij u; {Ci(pu;) + Ci(p)

+ Cj(puiuy) }
az | (9;pu; — 0;pug) /(v — 1) {Ci(p) + Cj(puj) } /(v — 1)
ay | pdju;j — po;i; -

as *{(Uijaj“j —7i;05u;) —u;Cj(045)
+ ﬁj(ﬁﬁzj — Elzc“rm)}
as | 9;d; — 9;d; Cj(q;)

Table 2.2: SGS-terms in compressible flow for non-uniformly filtered Navier-
Stokes equations. The SGS-terms identified in the intermediate column are those
that are encountered when a commuting filter operator is used [144, 141] while
those SGS-terms which solely emerge when a non-commuting filter operator is
used are gathered in the final column.

The main distinction between general integral filters and projection filters is that
projection filters satisfy the projection property, such that £o L(f) = L(f). In
order to distinguish between non-projective and projective filters we will frequently
denote projection filters with P, see (2.22). Of the filters presented in table 2.1
only the spectral cut-off filter is projective which stems from the fact that the
spectral cut-off filter is retrieved if in (2.23) (one-dimensional) Fourier-spectral
basis-functions e***, k = —k,, ..., ke, are used with k. the cut-off wave-number.

The application of a non-uniform three-dimensional filter to the Navier-Stokes
equations (2.1)-(2.3) yields the complete, unclosed large-eddy equations. These
may be expressed as [99, 141, 144],

op+0jpu; = —Cilp) — Cj(puy), (2.24)

Opu; + 0j(pustj + 6;5p — 6i5) = —Ci(pui) — Cj(pusuy) — 0;pTij
—Ci(p) + Cjloij) + 95(04; — &ij), (2.25)
WE + 9; ((E +D)Uj — Gyt + (jj> = ataytaztagtastas,  (2.26)

where p, pu; and p are the filtered variables, u; is the Favre-filtered velocity [31,
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32, 33),
~ PU;
; (2.27)

C; is the commutator error in time [37], which for a field f is defined as,

Ce(f) = Of —0f = [L,0](f), (2.28)

and C; is the three dimensional commutator error defined as,

Ci(f) = 0;f —0;f = [£,0})(f). (2.29)

Further E, 0;; and ¢; are the energy density, viscous stress tensor and heat flux
evaluated using resolved variables such that, e.g.,

v

E = % + L5t (2.30)

In (2.24)-(2.26) a number of closure terms can be identified and these are collected
on the right hand sides of these equations as well as in table 2.2. We distinguish
between two groups of SGS-terms. The first group consists of those SGS-terms
which emerge when a commuting filter operator is used (compressible SGS-terms
[141, 144]). The second group of SGS-terms consists of those SGS-terms which are
encountered when the commutation property between filtering and differentiation
does not apply (commutator errors).

The group of SGS-terms which emerge when a commuting filter is used is exten-
sively discussed in [141, 144]. The most important SGS-term of this group is the
SGS-stress which for compressible flow is given by,

~ T PU; P
pTij = p(uiuj—uiuj) = puiuj— ﬁ .

(2.31)

At sufficiently low Mach number only modeling of the SGS-stress pr;; is required
[137, 141, 144] and we will discuss some models m;; for the SGS-stress momentarily.

The representation of the filtered compressible flow equations as given in (2.24) -
(2.26) is based on the filtered quantities [p, pu;, p]. Other, closely related, formu-
lations have been considered as well, leading to the same LES template but with
slightly different definitions of some of the closure terms [88, 99, 137]. For example
one can also consider [p, pi;, E] as filtered variables and introduce an alternative
filtered pressure p instead. Alternative expressions for the energy equation have
also been put forward in [95, 30]. However, in each of these formulations, the
dominant closure term, which involves the turbulent stress tensor 7;;, appears in
exactly the same manner.
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All SGS-terms in the second group of SGS-terms are related to the commutator
error in time C; or the three dimensional commutator error C;. Compared to the
SGS-stress, commutator errors have not extensively been studied. The commu-
tator errors will be discussed in chapters 3 and 4. Modeling approaches for the
commutator errors are introduced and discussed at the end of chapter 4.

Before proceeding with the introduction of SGS-models for the SGS-stress tensor
p7ij a short comment should be made regarding the denomination Sub-Grid-Scale
terms [21, 60, 62, 146]. Formally all the SGS-terms as discussed above should be
regarded as Sub-Filter-Scale (SFS) terms as only the effect of the non-uniform
filter applied to the equations is incorporated. However, throughout we will stick
with the traditional denomination SGS and only mention this particular subtlety
here.

Many SGS-models for the SGS-stress have been developed over the years. A
thorough review and comparison can be found in publications by Vreman et al.
[141, 144], Geurts [48] and Meneveau and Katz [91]. Of the wide array of SGS-
models for the SGS-stress only one is actually used in this thesis: the Smagorinsky
model [111, 112]. For compressible flow this model is given by,

misjmag = - NeSija with e = ﬁ(csA)2’§’7 (2'32)

where §ij = 0ju; + Ojuj — %5@‘3}:% is the rate-of-strain tensor based on the Favre-
filtered velocity, pe the eddy-viscosity in which ¢, is the Smagorinsky constant, A =
(A1A3A3)Y3 and |S)? = 18,7 S;; is the rate of strain magnitude. The Smagorinsky
model shows low correlation with the actual SGS-stress compared to other SGS-
models in a-priori tests and is often found to be too dissipative [82, 137, 144].
This problem is largely remedied with the use of a Smagorinsky constant that is
dependent on time and or space, e.g., using of a dynamical procedure [39, 40].

Two other well known SGS-models are the Bardina or similarity model and gradient
model. These are introduced below and in chapter 4 two similar models for the
commutator error will be introduced. The Bardina or similarity model is given by
(7], _ S

m?}m = ﬁ(aﬂj] — ﬂﬂ]) (2.33)
This model is based on a similarity assumption between scales close to the cut-off
wave-number ~ A~! and the unresolved scales. The similarity model correlates
much better with the SGS-stress in a-priori testing than the Smagorinsky SGS-
model, but in practice it is found to dissipate not enough kinetic energy at low
resolution [144]. Therefore it is often supplemented with a Smagorinsky SGS-model
to form a mixed model [141, 144].

Because of the additional filtering of resolved variables required for the Bardina
model this model is quite expensive. Therefore the gradient model [23] was put
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forward which is arrived at after a Taylor expansion of (2.33) and is given by,

gradient 1 — 28ui auj
K 1 8.1‘k a$k

(2.34)

This model correlates well with the SGS-stress, but also tends to underestimate
the dissipation of kinetic energy.

2.3 DG-FEM discretization

In this section the DG-FEM discretization for the Navier-Stokes equations sup-
plemented with a Smagorinsky SGS-model is given. The actual discretization
resembles the DG-FEM formulation introduced in Refs. [73, 75]. Only the nec-
essary aspects required for this thesis will be given and the reader is frequently
referred to these references for additional details. Results of simulations based on
this discretization will be presented in chapters 7 and 8.

DG-FEM has been introduced in the 1970s and has proven their potential for con-
vective Euler equations, see [129, 130]. The main advantage of DG-FEM compared
to other methods of discretization such as finite difference or finite volume methods
is that higher order accuracy can be achieved while maintaining a discretization
which is as local as possible. This later aspect implies that within the “DG-FEM
philosophy” only communication with the neighboring element is allowed. This
has considerable advantages for e.g. parallization.

Only recently DG-FEM formulations have received considerable attention for ellip-
tic equations [5, 6] and subsequently for the Navier-Stokes equations [8, 9, 75]. In
this section we will give a DG-FEM discretization for the Navier-Stokes equations
including the Smagorinsky SGS-model. This discretization is largely based on the
formulations presented in [8, 75]. However, with the introduction of a Smagorinsky
SGS-model the equations become non-linear with respect to the gradient tensor
0;U, [18, 19]. Compared to DG-FEM formulations for the Navier-Stokes equations
which are linear with respect to 9;U,, this requires some additional assumptions in
order to keep the discretization “as local as possible” which will be pointed out.

We present the discretization using the short hand notation introduced at the end
of section 2.1. Including the Smagorinsky SGS-model the equations read as,

8Us + 0;FS;(U) — 0;FY,(U, VU) + 8;M,;(U,VU) = 0, (2.35)

where 5 X 3 matrix M,; constitutes the SGS-model. For the Smagorinsky model
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M, is expressed as,

Myy(U,VU) = —p, (2.36)

oN o
<.

where g is the eddy-viscosity as defined in (2.32).

The remainder of this section is divided into two parts. In the first part the
polynomial basis-functions, the solution spaces and some necessary notation is
introduced (section 2.3.1). After this we proceed with the introduction of the
actual discretization (section 2.3.2).

2.3.1 DG-FEM basis-functions and solution spaces

In a DG-FEM the domain 2 is divided into N open elements K C ) with a
typical length-scale h. The resulting tessellation 7}, is given by,

T, = {KC]R{?"KiﬂKj:@ifi;éj, Us K = 2. (2.37)
The union of all shared element faces S = 0K, N JKg is denoted by,
r— {S#@)S:(?KLHQKR, Ky, Kp €T}, (2.38)
while the union of boundary faces S = 0K N OS2 is denoted by,

phound _ {S#@‘Sz@Kﬂ@Q, K €T}, (2.39)

Over each element K we next introduce basis-functions which span the local poly-
nomial space P,(K) of maximal polynomial order p. The resulting computational
solution space is given by,

Uy = {Ua € [L2(Q)P|Ualk € [Po(K)]° VK € Th} (2.40)

Next we present a particular construction of these basis-functions for which we
follow [130].

First we define N, reference polynomials {qﬁl}fv:po_ ! over a reference element K =

[~1,1]3. The polynomials {&Z}fv:po are constructed such that they span the local

polynomial space P,(K) and are defined as,

B(K) = (6@} = {a@g @@ 0<i+j+k<p}  (241)
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Figure 2.1: Local Riemann problem at an interface S = 0Ky N 0Kgr. As a

convention we assume that n = n’.

where g;, 1 = 0...p, are one-dimensional Legendre polynomials which are given by

[1],
(2.42)

)

Lol

g0() =1, q) =& @€ = &-

Then, for example,

(&) = go(€1)g0(§2)90(&3) = 1,
1(&) = 91(&1)90(&2)90(&3) = &,

04(€) = g2(1)90(&2)g0(83) = (& — 3),
$5(&) = g1(&)g91(&2)90(&3) = (& — 3)&2,

Ony-1(8) = gp(€1)9p(E2)9p(E).

The polynomial basis-functions for an arbitrary element K € 7}, are defined using
a mapping Gk : K — K from the reference element K = [~1,1]? to element K.
The polynomial basis-functions for this element K are then defined as,

oK(x) = di(GRl(x)), i=0,...,N,—1. (2.43)

For the DG-FEM discretization of elliptic equations there is a need to introduce
the “gradient” solution space 5. This space is closely related to the solution space
Uy, and is defined as,

Snoi= {Zaj € [PAQP Zogli € [B(K)PP VK € T} (244)
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Here P,(K) is the same polynomial space as used in the definition of U}, such
that for all U, € Uy, 0]}-LU,1 € Xj. The operator 8;‘ = 0j|k, K € T}, denotes the
element-wise or broken differential operator [27].

Finally we introduce the usual jump and averaging operators [-]; and {-}. For
Uy € Uy, at a face S = 0K, N OKR (see figure 2.1) these are defined as,

[Ualy = Ugny + Uglngl, {Ua} = 5(Ux + UL (2.45)
L

are the outward pointing normals with respect to K and
)

Here n* and nf* = —n
KR, respectively, UL(y) = lim.|o U,(y — en?) and UE(y) = lim.|o Us(y — en
For Z,; € ¥ we introduce,

[Zaj]j = Zim} + ZainT {23} = 5(Za; + 235)- (2.46)

After having introduced the necessary notation we now proceed with the actual
discretization of (2.35).

2.3.2 DG-FEM discretization of the Navier-Stokes equations with
a Smagorinsky model

In order to discretize (2.35) we introduce the auxiliary variable 6,; € ¥5. Then the
second order PDE (2.35) can be rewritten into a system of two first order PDEs
8, 9, 75],

0 = U+ 0,F;(U) - 9;F%,(U,0), (2.47)
Ooj = 0;Ua. (2.48)

Here we have merged the matrices FJ; and M,; into the matrix F¢;:

0
Fo;(U,VU) = Fy;(U, VU) + Mo; (U, VU) = | (u(T) +pe)Sij |- (2.49)
OijU; — dj

Then, after multiplying equation (2.47) and (2.48) with arbitrary test-functions
Weo € Uy and Z,; € Xy, respectively, integrating over the individual elements
K € T and finally summing over all these elements, we arrive at,

0= ¥ / Wa(atUﬁangj(U)—angj(U,e)) dx, (2.50)
KeTy, K

ZaiBoidx = /Za-a-Uadx. 2.51
> [ it > [ 20, (2.51)

KeTp KeT,
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After some manipulations these equations become (see [8, 9, 75] for details),

0= > /KWoﬁtUadx

KeTy,

- /K ajWa(ng(U)—ng(U,e)) dx

KeT,
+ / [Wal; A (UL, UR) —F2,(UF, UR, 98, 0%)}
I

+ (W ER (UL, UR) —F2 (UL, UR 6L, 07)]; dx,  (2.52)

Z /KZaj%jdx = Z A{ZajajUadX

KeT, KeT,
+/F[[Zaj]]j{{ﬁa(ULaUR) —Ua}
+{ Zaj UL (U, UR) — U,]; dx, (2.53)
where F g ﬁgj and ﬁaj are the convective, viscous and auxiliary numerical flux,

respectively. These fluxes are dependent on the left and right states of U and 6
at an interface S € I" and are introduced to deal with the multi-valued solutions
at the element faces S. For the actual choice of these fluxes we follow [8, 75] and
their definitions are given next. In the presentation we restrict ourselves to the case
of periodic boundary conditions when all element faces can be treated as interior
faces and I'P°"d = (). The extension to other types of boundary conditions can be
found in [73, 75].

Auxiliary flux

The numerical flux Uy in the auxiliary equation (2.53) is given by Uy = {Ua}
[8, 75], such that (2.53) becomes,

Z / Zajﬁajdx = Z / ZajajUadX—/{Zaj}[[UaﬂjdX. (2.54)
Ket, 'K KeT, 'K r

This expression is simplified by introducing the global lifting operator R,; € X
6, 9, 73, 75],

3 /K ZuyRoy(U) dx = /F (2o MUl d%,  VZaj € S, (2.55)
KeT,

and provides the following definition for a gradient of state 6,; = 8J}-’Ua — R,;(U)
[103).
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Viscous Flux

As numerical flux for the viscous part a central flux in combination with a stabi-
lization term is used [8, 9, 15, 19, 75],

FY (UL, UR 08, 07) = {FY,(U,0) — 9y Aajon(U)R5,(U)}. (2.56)

The constant in the stabilization term 7, > 0 is known as the Brezzi constant,
Aqjpr(U) is the homogeneity tensor, which well be discussed momentarily, and
ng(U) € X, S €T, is the local lifting operator which is defined as,

3 /Kngng(U)dx = /S{{ng}}[[Uﬁ]]kdX, VZg, € Sp, S CT. (2.57)
KeT,,

One can readily verify that the global and local lifting operator are related to each
other through R,; = > gcr jo.

We choose to define the homogeneity tensor A, gy as,

oF’. (U, Z 05;;(U, Z

Ajor(U) = —o——— v.2) 95:4(0,2) (2.58)
0Zsy;

and is constructed under the assumption that the eddy-viscosity coefficient p. is

constant element-wise. For the Navier-Stokes equations, which are linear with

respect to the gradient tensor 0;U,, the homogeneity tensor is defined as [75]:

oop(0) = Heil02) 2.59

ajpe(U) = T,@k (2.59)

and one may use that flamk(U) OUp = Fy;(U,Z). This property is essential

in order to maintain the strict locality of the method [75, 128]. Now with the

introduction of the Smagorinsky model the equation are non-linear with respect
to the gradient tensor 9;U, and Aajsk(U) OpUs ~ Fy, (U, Z).

Convective fluxes

For the convective fluxes we consider both the HLLC flux and Lax-Friedrich’s flux.
Lax-Friedrich’s flux is given by,

Fg; (UM UR) = {Fg(U)} + 3AI0);- (2.60)

Here A is the maximum of the Euler flux Jacobian Jog = 0FS;(U)n;/0Us and is
given by,
A = max([a], [a” & o], [a%], " + o)), (2.61)
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Figure 2.2: Tllustration of the HLLC flux [11]. The terms s’ s and s™ are
the shock-speeds corresponding to the two acoustic and one contact wave, respec-
tively, in the solution of the Riemann problem, U’ and U® are the left and right
states, while UZ* and Uf* are the left and right intermediate states (2.66).

where 4 = u”-n, 4 = uf*-n and a = \/yp/p the speed of sound. Lax-Friedrich’s
flux can be seen as a generalization of the well known upwind-flux [80].

For the HLLC-flux the discontinuity at the element interface (see figure 2.1) is
interpreted as a local Riemann problem [80, 121]. However, instead of solving the
full local Riemann problem the HLLC-flux only solves this problem approximately,
hence the HLLC-flux is often termed an approximate Riemann solver [11, 80, 121].

The complete HLLC-flux can be written as [130],

Fo;(URUR) = R} = {(1s" = ") UEnE + (s — |5™)) U n

+ s ULk + |57 U(fnf}. (2.62)

where s” and s™ are the shock-speeds of the two acoustic waves and s™ the shock-
speed of the contact wave in the solution of the Riemann problem for the Euler
equations [11, 121]. These are given by,

st = min(a? — o®, a0t — a®), (2.63)
s® = max(ar + o, af* + af), (2.64)
SM _ pRﬁR(SR _ ,&R) _ pLﬁL(SL _ aL) +pL _ pR (265)

pli(stt —aft) — ph(st —at)

such that s < sM < s, The two intermediate states UL* and Uf* are defined
according to Batten [11, 130] such that U%* is given by,

L ~L 1 0

S § L

UL* — *
oL _ oM oL _ oM (p* —p

Byng |, (2.66)
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The right intermediate state UR* is arrived at by replacing all subscripts L with
R in (2.66). Finally the intermediate pressure p* is constructed such that p* =

pf* = p* and is given by,

Lx* L(SL AL)(SM _ ,&L) —i—pL. (2.67)
In fact, the HLLC-flux is constructed such that, based on the wave speeds s, s

and s, the HLLC-flux uses either ULA , UR or one of the intermediate states UX*
or UP* to compute the flux [11], i.e. ng(UL,UR) =F; (UHLLC) " where

Ul if st>o,
UHLLC . Ul it st <0< SM,
) Ul if M <0< s

Uf if sf<o.

(2.68)

For example in case s < 0 and 0 < sM < s (see figure 2.2) the HLLC-flux adopts
the left intermediate state UX* [11, 121].

Discrete Navier-Stokes operator

After the introduction of the numerical fluxes F ‘, [ and U we can now proceed
with the construction of the discrete Navier-Stokes operator BP%(W, U). There-
fore we next insert the gradient of state # = VU — R into (2.52),

0 = > /KWaatUadx

KeT,
_ K;Th /KajWa (Féj(U) —F,(U, VU - R)) i
+/F[[Wa]]j{{ﬁ§j(UL,UR)

— BY,(UL, UR vhUE - RE VPUR - RR)Jdx, (2.69)

where we have used that by construction F 5; and F o; are single-valued at the
element interfaces, hence [[ﬁacj(U)]] ; and [[@g]]] j are zero.

The problem now lies in the terms Fy (U, V"U —~ R(U)). In the case without
the Smagorinsky model, we could use Fj;(U, VMU - R(U)) = ng(U,VhU) —
Auisr(U)Rar(U), with A, (U) as defined in (2.59). Here we can only assume
that

Fa; (U, VMU-R(U)) ~ Fg{j(U,VhU) — Ak (U)Rpr(U), (2.70)
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where the homogeneity tensor A, ;g is defined according to (2.58). However, the
use of an approximation similar to (2.70) is required to maintain the strict locality
of the method.

Therefore, upon inserting (2.56) and the approximation (2.70) into (2.69), the
discretization will be based on,

0 = Z /KWaatUadx

KeT,

S /K 0 W (F5,(U) = T2, (U, VU) + Aujor(U)Re(U) ) dx
KeT,

" /F [Wal A, (U) - F2, (U, VU)
+A0je(U) Ror(U) + 1y Ajon R3;,(U) } dx. (2.71)

After some reshuffling and using the definition of the global lifting operator (2.55)
this expression may be written as,

0= Y /KWaatUadX— 3 /KBjWa<Facj(U)—ng(U,VU)) dx

KeTy, KeT,
" /F Wal AES (U)) — (0" WaAajor (0} [Usli
[Wal A2, (U, VU)} dx

+ Z / Raj(W)Aajgkng(U)dX
KeT, K

Y /K RS (W) Au; o RE0(U) dx. (2.72)

Sel’ KeTy,

As a final step the following approximation is used which allows us to completely
express the discretization in terms of the local lifting operator [28],

> / Raj(W)AqjsrRar(U) dx
KeT, 'K

= nfz Z /Kjo(W)Aajgkng(U)dx. (2.73)
Sel' KeTy,

Here ny denotes the number of faces connected to an element. This last step is
required in order to achieve the strict locality. The full discrete Navier-Stokes
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operator is now given by,

BYS(W,U) = > / WodiUs dx
KeT, K

_ K;h /K 0Wa (F2,(U) ~ Fi,(U, VU)) dx
" /F Wal AFS (U} — {0 WaAajion(0)} [l
[Wal {F2, (U, VU) b dx

Tt nn S S / RS (W) Awai RS, (U) dx.  (2.74)
ser keT, ' K

In the final steps towards discretizing the equations we observe that the discrete
solution U* € U}, should satisty,

0 = B(W,U*), YW €U, (2.75)

In order to determine this solution, next U as well as the test-functions W are

expressed in terms of basis-functions such that for each element we approximate
U and W as.

Np—1 Np—1

Ualx,t) = Y UG08 (%), Walxt) = Y WE(1)ef (%), (2.76)
1=0 =0

Here U K(t) and chf (t) are the expansion coefficients for U and W, respectively,
at time ¢.

Upon inserting the approximations for U and W into (2.75) and using the fact
that we may choose the test-function arbitrary, the following system of equations
is arrived at for each element K € 7T,

0 = Mij(K)<8tU£(t)) + LE(U@#), i=0,...,N, 1. (2.77)

7

Here M;;(K) = [ ¢Z-K(x)¢f-((x) dx is the local mass-matrix, U(t) denotes the

vector of expansion coefficients at time ¢ and L (U(t)) are the residuals. These
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K

residuals L, are given by,

LEOW) = — [ 00l (B, (0) - 2,0, VD)) ax

+ /a IONLAFE (U] 9]0 Anon(U)} [V
— [ 1;4F,,; (U, VU) } dx
ot np) Y /S [0 Anyon RS, (U) } dx, (2.78)

SedK

where in the last term use was made of the definition of the local lifting operator.

In chapters 7 and 8 results of simulations based on this discretization are given.
For the time-stepping, in chapter 7 explicit Runge-Kutta time-stepping is used,
while in chapter 8 use is made of the fully implicit Space-Time DG-FEM (STDG-
FEM) method [73, 75, 130]. In STDG-FEM the equations are directly solved in
four dimensions, three spatial dimensions and one in time. Details concerning the
time stepping will be given in chapters 7 and 8, respectively. Finally we note
that for full details, e.g., on how to compute the local lifting operator ng(U) or
the treatment of boundary conditions other then periodic boundary conditions the
reader is referred to [73, 75, 130].






Chapter 3

Commutator errors in the
filtering approach to LES

In this chapter' the commutator error is analyzed based on the simple scaling
relation (1.6) already given in Chapter 1. First in section 3.1 we further discuss
non-uniform filtering and the commutator error problem. Then in section 3.2 the
dominant scaling behavior is determined not only for the commutator error Cj,
but also for the SGS-stress 7;;. In section 3.3 results of an a-priori analysis are
shown confirming this scaling behavior and finally in section 3.4 the main results
are summarized.

3.1 Introduction

LES holds promise to become a relevant engineering simulation strategy, applicable
to flows of realistic complexity. However, in order to efficiently extend the LES
capabilities to turbulent flows in complex geometries it is required to allow for
spatially non-uniform grids and filters [50, 54]. These filters are characterized
by a filter-width which is an explicit function of spatial coordinates? A(x). The
filter-width should be reduced, i.e., one locally resolves more scales of the flow,
in the ‘turbulent’ parts of the flow-domain. Likewise, in regions with comparably
quiescent flow the filter-width can be chosen larger without notably affecting the
accuracy of the simulation.

The introduction of a spatially non-uniform filter-width complicates the devel-

!This chapter is largely based on Van der Bos and Geurts [122].
Zand possibly also of time [37], however, this is not included in the present chapter.

47
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opment of the corresponding large-eddy approach since additional closure terms
emerge that may or may not require explicit modeling. These terms are gener-
ally referred to as commutator-error subgrid terms or simply commutator-errors
and originate from the fact that non-uniform filtering and differentiation do not
commute [50, 54, 52, 38], i.e.,

Ju , Ou

dx 7 o’
These commutator-errors have been considered before in literature (e.g., [47, 54, 52,
72,131, 133]) concentrating on their proper definition, the relation with the explicit
filter that was used and the role of specialized higher-order filters in connection
to the magnitude of these terms. In this and the following chapter we extend this
work in a number of ways.

(3.1)

In this chapter a detailed investigation of the commutator-errors, their effects on
the flow and an estimation of their actual magnitude, using direct numerical simu-
lation data of a turbulent mixing flow, will be considered. This is an essential pre-
requisite before non-uniform filtering with significant gradients in the filter-width
can be applied in actual LES. In this chapter we present results of analysis and a
priori data-base evaluation and incorporate regular second order filters, such as the
symmetric top-hat and Gaussian filters, as well as high order filters [26, 131, 133]
and filters with an a-symmetric (skewed) support [51] into the investigation.

A first impression of the magnitude and scaling of the commutator-errors can
be obtained through investigating Taylor expansions of the relevant terms. The
present analysis extends earlier work by Ghosal and Moin [54] who considered sym-
metric filters. In this chapter also skewed filters are considered which significantly
alters the findings, as the skewness of a filter implies a decrease of the order of the
filter which leads to an increase in size of the commutator-error [51]. Conversely,
an increase in the order of a filter results in a formal decrease of the size of the
commutator-error and has led to the development of higher order filters. Higher
order filters have originally been proposed in the context of LES in [51] and con-
structed in a specific framework in [47, 131]. These filters have recently regained
interest [60, 64, 87, 133] and appear to resolve the issue of explicitly modeling
commutator-errors in LES. Specifically, the use of a suitable higher order filter can
render the commutator-errors arbitrarily small. However, the use of higher order
filters also leads to a formally equally strong decrease of the contributions of the
turbulent SGS-flux 0;7;; in view of the identical dominant scaling behavior with
A and its derivatives [47, 51]. Hence, it is not possible to obtain a separate control
over the commutator-errors compared to the turbulent SGS-flux merely by adopt-
ing a suitable class of filters. In fact, other measures need to be taken to influence
the size of the commutator-errors relative to the traditional subgrid terms, as will
be indicated in this chapter.
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The analytical estimates will be complemented by a prior: evaluations based on
DNS-data of a turbulent mixing flow [141]. This allows to compare the actual
magnitude of all commutator-errors and subgrid terms on specific LES grids and
for selected filter-width variations. The effect of skewness and of filter-order on the
SGS-flux and the commutator-errors will be considered. These results establish
the actual scaling of the commutator-errors and SGS-fluxes, confirming the Taylor
expansion estimates. The a priori comparisons help to globally identify condi-
tions such that explicit commutator-error modeling is required. In particular, if
the filter-width variations |0;A| become too large, the commutator-errors need to
be separately parameterized with appropriate subgrid models. We will propose
some explicit commutator-error models and compare their properties with basic
properties of the exact commutator-errors at the end of chapter 4.

In order to simplify the analysis in this and the following chapter the isothermal in-
compressible Navier-Stokes equations rather than the compressible Navier-Stokes
equations (2.1)-(2.3) are used. Compared to the compressible Navier-Stokes equa-
tions, the isothermal incompressible Navier-Stokes equations assume a constant
density, p = poo, and a kinematic viscosity, ¥ = p/p, independent of temperature
[65, 100] and are given,

8]'Uj = 0, (32)

1
Oru; + 0; (uiuj' +di5p — EajuZ) = 0. (3.3)

Here the Reynolds number Re is defined according to (1.1).

If we apply a non-uniform filter operator over these equations we find,
8jﬂj = —Cj (Uj), (3.4)
1
oyu; + 8j (ﬂiﬂj + 5wﬁ — Eﬁjm) = —Ct(ui) — 6j7‘ij — Cj (uluj)

~Cilp) + - [C5O5) + 0,C;(w)]. (35)

Here u; and p are the filtered variables and a number of SGS-terms can be identified
on the right-hand-sides of these equations. Most of the SGS-terms are commutator
errors and only one SGS-term due to non-linear interaction of the resolved variables
is encountered: the SGS-stress 7;;. In the incompressible limit the SGS-stress
simplifies to 7;; = W;u; — w;u; which can be readily verified upon inserting p = poo
in (2.31).

The organization of this chapter is as follows. The dependence of the size of the
commutator-error on the order of the filter will be established in section 3.2 and
compared with the magnitude of the divergence of the turbulent stress-tensor. In
section 3.3 results of an a priori analysis of the commutator-error will be presented.
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In particular, we will introduce, quantify and compare several measures for the
magnitude of the commutator-errors and the SGS-fluxes. The a priori analysis
will focus on effects derived from the order and skewness of the filter. Finally, in
section 3.4 we summarize our findings.

3.2 Dominant scaling behavior of sub-grid-scale terms

In this section we first determine the dominant scaling of the commutator errors
for various general filters. We comment on the effect of skewness and afterwards
consider the use of higher order filters. Subsequently, we determine the dominant
scaling behavior of the turbulent stress contributions. It will be shown that both
types of SGS-terms can be reduced arbitrarily by raising the order of the filter
to a sufficiently high value. In fact, both subgrid contributions display identical
leading-order scaling with the non-uniform filter-width and its derivatives. Con-
sequently, for non-uniform filter-widths both contributions may require explicit
modeling. In case the filter-width is constant, only the turbulent stress contri-
butions remain. Hence, commutator errors can only be avoided independently by
properly controlling the gradients in A. It is not possible to reduce the commutator
errors separately by merely adhering to specialized higher order filters as claimed
by a number of researchers [52, 54, 133].

Dominant scaling behavior of the commutator error

To determine the order of magnitude of the commutator errors one may explicitly
evaluate J, f(x) in one spatial dimension (see also Refs. [38, 50, 54]). After some
calculations the following expression for the commutator error is obtained,

] —T

C(N@) = —Ax) / 2 S6(s) ! ( + Alx)s) ds

To—T

s o3 (52

where zg and x; and the boundaries of the domain. As noted most explicitly in
[38], the commutator error consists of two parts; an interior part and a boundary
term. The latter term arises since principally filtering can not be extended beyond
the boundaries of the flow-domain [29]. For common filters such as the top-hat
and Gaussian filter this contribution is zero or negligible if z is sufficiently sepa-
rated from the boundary. The interior contribution to the commutator error arises
directly from the non-uniform filter-width, as expressed by the leading A’-factor.

1

, (3.6)

Y=o
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In the remainder of this chapter we will restrict ourselves to the interior term of
the commutator error and consider xy — —oo and 1 — oo. This is appropriate
for the inhomogeneous turbulent mixing layer flow studied here.

The scaling of the interior term of the commutator error with filter-width can be
inferred from Taylor expansion, provided the solution is sufficiently smooth. If one
introduces the coordinate transformation s = (y — z)/A(z) in (2.12) one obtains
after some calculation,

Co(f)()
NS /_ $G(s) [ (z + Alx)s) ds, (3.7)
= —A'(z) /_OO sG(s) [f’(ﬂ?) + sA(z) f"(x) + %SQAQ(J«")f”/(UC) + -+ | ds, (3.8)
= - (r _1 1)!A/N_1 M, g’ (3.9)
r=1

where M, denotes the r-th moment of the filter, defined as:

[e.e]
M, = / s"G(s) ds. (3.10)
—0oQ
Since we consider normalized filters the zero-th moment My = 1. In the sequel of
this chapter we restrict to filters for which all moments M, with » > 0 exist. It
should be remarked that the spectral cut-off filter does not satisfy this condition;
in particular, for the spectral cut-off filter the even order moments beyond second
order do not exist. We hence exclude the spectral cut-off filter from the discus-
sion. In this section we will for convenience also assume that the solutions have

continuous derivatives of all orders and convergent Taylor expansions.

The smoothing properties of general filters can be characterized to some degree by
the effect of filtering on polynomials. For convenience in what follows we formalize
this and introduce an N-th order filter by requiring,

M, = 6,9 for r=0,...,N—1, (3.11)

where d;; denotes the Kronecker delta. Such N-th order filters leave polynomials
of degree N — 1 invariant. In terms of (3.11) the symmetric top-hat filter and
the Gaussian filter are second order filters, while the a-symmetric top-hat filter,
when « # 0, is formally only first order, i.e., only normalized. This illustrates that
non-zero skewness decreases the order of the corresponding symmetric filter.

For symmetric filters the lowest order contribution in (3.9) may arise at » = 2 and
the commutator error is of order O(A’A). This estimate for the commutator error
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applies to common second order filter such as the symmetric top-hat or Gaussian
filters and has been derived before in literature [38, 47, 54]. Next, we turn to
skewed filters. In this case the odd moments Ms,_1 are nonzero and the lowest
order contribution to the commutator error may arise at » = 1. Thus, skewness
formally reduces the order of the filter and increases the scaling of the commutator
error to O(A").

One has to realize that, although filters can be strictly a-symmetric, it is well
possible that the lowest order contributions to the commutator error remain very
small. Effects of skewness on the commutator error become apparent only in case
the lowest order odd moments Ms,._1 become sufficiently large. For example, the
filters considered in [54] are strictly skewed filters in physical space. However, in
illustrations found in this reference the odd moments were negligible compared
to the even moments My, and overall the filters approximately corresponded to
symmetric filters. For the skewed top-hat filter considered in this and the following
chapter the first and second moment are given by M, = v and Ms = %—F’y? Hence,
effects of skewness are expected to become relevant if the shift v is large enough.
As an indication | M| &~ My for 1/10 < |y| < 1/2.

Filters for which N > 2 are referred to as higher order filters. Higher-order filters
may be constructed in different ways, see Refs. [47, 51, 131, 133]. Typically such
higher-order filters are formulated in terms of the externally specified filter-width
A. It is important to notice that if one keeps A fixed in this class of filters
then the effective filter-width at order N, denoted by A.(N), can be shown to
decrease (rapidly) with increasing N. The interpretation is appealing in order
to emphasize that at fixed A the filtering becomes less and less effective with
increasing N and, for the filters considered by us, approaches the identity operator
in the limit. In fact, the limiting identity operator leaves all modes invariant which
corresponds to its Fourier-transform being equal to unity for all wave-numbers.
Correspondingly, the effective filter-width as defined in (2.14) is zero, in line with
the limiting behavior of A.(/N) mentioned above.

The expression for the commutator error as given in (3.9) suggests the possibility of
directly controlling its magnitude by considering higher order filters as introduced
above. By requiring that certain moments M, identically vanish, the leading order
contribution to the commutator error can be controlled explicitly. Specific high-
order filters serving this purpose were first proposed in [131]. In view of (3.9) all
N-th order filters have the property that the implied commutator error reduces
to O(A’AN=1). This would allow to neglect the commutator error contributions
from the filtered LES equations, simply by turning to an appropriate higher order
of filtering. However, the dominant scaling behavior of the commutator error is of
no consequence by itself. Rather, one has to incorporate the dominant scaling of
the divergence of the turbulent stress-tensor as well, before anything more definite
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can be established. We turn to this next.

Dominant scaling behavior of the SGS-stress

In order to establish the dominant scaling of the turbulent stress contributions
we proceed analogous to the above derivation for the commutator error. The
one-dimensional SGS-stress tensor is given by 7 = u2 — @? for which one readily
obtains,

(@) :/ Gls)u(x + Alw)s) ds

{/ G(s m+A(m)s)ds}2, (3.12)

_ /_O; (Zr'AT o) ds
_ {/: G@)(%%Arsra;u) ds}Q, (3.13)

in which we used expressions for u2 and @ arrived at by a Taylor series expansion
similar to (3.8) (see also [17, 51]). This expression can be simplified to,

S MT T Qr — MT ? T(ar
T(x) = 27A 8xu2—z <7> AP (O0u)?

r=0 : r=0

- 2§: i My M, — LN 9 Ohu. (3.14)

For an N-th order filter the scaling behavior of the turbulent stress tensor displays
characteristic dominant terms. These can be inferred from (3.14) as

T(z) = % (0 u?
From (3.15) we observe that 7 ~ AY for general N-th order filters, in case N > 2.
Consequently, the relevant flux 9,7 scales with terms of O(A™N) as well as terms
of O(A’AN=1). We observe that the dominant formal scaling behavior is identical
to that established above for the commutator error. In the special case N = 1, the
first term in (3.15) is identically zero in view of the property d,u? = 2ud,u. For
these filters the SGS-stress is thus unaffected by a non-zero first moment M; and,
although N = 1 the turbulent stress tensor scales as O(A?). This is formally one
order in A smaller than the corresponding commutator error at N = 1.

— 200N u) AN + O(ANT). (3.15)
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Although the use of higher order filters allows additional control over the size of
the commutator error and SGS-stress, the dominant scaling of both the commu-
tator error as well as the divergence of the turbulent stress tensor with A and its
derivatives is formally identical if N > 2. For N = 1 we even observe that the
commutator error is formally larger than the SGS-flux. Judging from these order
of magnitude estimates, this suggests that if in a certain flow the turbulent stress
contributions require explicit modeling, one should also consider incorporating ex-
plicit modeling for the commutator errors. It appears to make little sense to model
one of the subgrid terms and ignore the other class of subgrid contributions which
are formally of equal order of magnitude.

The order of magnitude estimates provide only a fairly rough indication of the
dynamic importance of the individual subgrid contributions. In fact, rather than
controlling the size of the commutator errors by increasing the order of the filter as
suggested before in literature, the control of the spatial variations in A appears to
allow another method of separately influencing the size of the SGS-flux relative to
that of the commutator errors. If A’ can be kept sufficiently small, it is conceivable
that the terms with the lowest order scaling in A have a (very) small ‘pre-factor’
which can even imply that only the next order terms, i.e., the turbulent stress
related contributions only, require explicit treatment. In order to quantify these
aspects we turn to an a priori analysis of the various subgrid terms in the next
section and determine the actual size of the commutator errors and turbulent stress
contributions in developed turbulent mixing.

3.3 A priori analysis of commutator errors in turbulent
mixing flow

In this section, data of DNS of turbulent flow in a temporal mixing layer will be
used to quantify the magnitude of commutator errors and SGS-fluxes for a variety
of filter-width non-uniformities and filter specifications. In particular, for skewed
as well as higher order filters the size of the closure terms will be determined and
specific trends will be interpreted in view of the analysis presented in the previous
section. We first describe the DNS, then introduce some measures with which the
closure terms will be quantified and finally present a priori results which establish
the magnitude of the terms in relation to, e.g., filter-width, skewness and order of
the filter.

Description of DNS and filter-widths

For the a priori analysis of the commutator errors we consider turbulent flow in a
temporal mixing layer. We evaluate data presented in [141]. The governing equa-



3.3. A priori analysis of commutator errors 55

Figure 3.1: Contours of the spanwise vorticity of the temporal mixing layer at
a) t =20, b) t = 50 and c) ¢ = 80. Superimposed on these figures are the non-
uniform filter-width variations A, as a function of zo for the case a = 3/4 and
B8 =5 (dotted), 8 = 10 (solid) and 8 = 30 (dashed).

tions are solved in a cubic geometry of side ¢ which is set equal to four times the
wavelength of the most unstable mode according to linear stability theory. Peri-
odic boundary conditions are imposed in the streamwise (z1) and spanwise (z3)
direction, while in the normal (x3) direction the boundaries are free-slip walls.
The initial condition is formed by mean profiles corresponding to constant pres-
sure, u; = tanh(xzy) for the streamwise velocity component and ug = usz = 0.
Superimposed on the mean profile are two- and three-dimensional perturbation
modes obtained from linear stability theory. The DNS data were obtained at a
spatial resolution of 1923 grid-cells, employing a fourth order accurate spatial dis-
cretization scheme in combination with explicit Runge-Kutta time-stepping. A full
description may be found in [141].

The filter-widths that will be considered are kept constant in the x1 and x3 direc-
tions while in the z9 direction we allow for significant variations in A. Specifically,
the filter-width is reduced considerably near the centerline where the flow is most
unsteady and displays rapid, large-amplitude variations. We parameterize the
filter-width variations by the following two-parameter family:

A=Ay =A,, Ag(2) = Ap(1 — ae™B22/0%), (3.16)

The reference filter-width A, is taken equal to £/16, corresponding to the evaluation
of LES described in [141]. In the definition of the non-uniform filter-width Ag(x2),
the parameter o controls the ratio between the minimal filter-width and A, i.e., «
measures the ‘depth’ of the filter-width modulation. In addition, the parameter 3
controls the width of the region of the flow-domain in which the filter-width varies
significantly. The maximal value of a considered here is « = 3/4 which corresponds
to a minimal filter-width Ay, = A,/4 = £/64 which is equal to three grid-cells
in the DNS grid. In figure 3.1 different non-uniform filter-width variations are
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shown alongside snapshots of the evolving flow. By varying « and § and specific
properties of the filter such as skewness and order, a systematic assessment of the
commutator errors can be made.

Measures for the closure terms

To quantify the dynamic effects of the closure terms we concentrate on the decom-
position of the non-uniformly filtered convective flux. This decomposition follows
from the application of a non-uniform filter operator £ to the convective terms in
the momentum equations, i.e.,

8j (uzu]) = 8]- (ﬂzﬂ]) + 8jnj + Cj [uiuj], (317)

where we distinguish a mean, SGS-flux and commutator error contribution on
the right-hand side of (3.17) respectively. Since the filter-width is considered non-
uniform only in the zp-direction the commutator error C;(u;u;) reduces to Co(u;uz).

To quantify the magnitude of the various fluxes in (3.17) the Lo-norm is considered,
which for a field f is defined as,

172 = ,—Sln /Q f(x)? dx. (3.18)

The domain of integration © can coincide with the entire flow-domain ¢3 and
dx = dx1dxadrs, but for some quantities we will restrict the integration to the
homogeneous directions x; and x3 and adapt 2 accordingly. This allows to identify
the variation of the field f in the normal direction.

Next to the Lo-norm of the individual contributions in (3.17) we also consider the
dissipation rate for the resolved kinetic energy,

e = —9FE = —at(/ %ﬁimdx). (3.19)
Q

Using the non-uniformly filtered momentum equation for incompressible flow (3.5)
one obtains,

1
e = / { — ﬂiaj (ﬂlﬂj) — ﬂlaZ]_D + R—ﬂiﬁjjm — ﬂiajﬂ‘j
Q e

@ |C; (Byus) + ajcj(ui)} } dx. (3.20)

_ _ 1
—u;Cj(uiuj) — wCi(p) + Toli

The total contribution arising from the nonlinear convective flux involves, next
to the turbulent stress terms, the ‘basic mean’ contribution @;0;(w;u;) and the
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‘basic commutator error’ term %;C;(u;u;). Combined, these may be written in a
convenient form as,

ﬂi(‘)j (Uzﬂ]) + ﬂ,CJ(u,uJ)
= (ﬂlaj(ﬂlﬂj) — %ﬂﬂﬁ%%) + (HZCJ(UZUJ) — %ﬂ,ﬂlCJ(u])>,
= %Oj(mmﬂj) + (ﬂZC](uZuJ) — %Uﬂﬂﬂuﬂ), (3.21)
where use was made of the non-uniformly filtered continuity equation (3.4): 0;u; =
—C;(u;). This decomposition of the convective flux contribution incorporates the
non-solenoidal features of the non-uniformly filtered velocity-field [141, 122]. For-

mally, it is analogous to the formulation that is commonly used for compressible
flow; in the latter case

e = —at( /Q L5070 dx), (3.22)

where u; denotes the Favre-filtered velocity (2.27). In the compressible case the
velocity is non-solenoidal for physical reasons whereas here 0;u; # 0 due to non-
uniformity of the filter. Following this convention, we may express € as

€ = Emean T €p + Evisc T €sGS + €CE, (323>

where we identified different contributions defined as follows:

€mean = / U; 8jﬂiﬂj - %ﬂlﬂl 8]-@- dx = / %8] (ﬂlﬂzﬂ]) dx, (324)
Q Q

Ep = /ﬂz O;p dx, (3.25)
Q
1 _ _
Evisc = —E/Qui 0;0;u; dx, (3.26)
£€sas = /ﬂz 8j7-ij dX, (327)
Q
ECE = / u; C](uzu]) — %Ulﬂz Cj(uj) dx. (3.28)
Q

These individual terms denote the mean convective contribution, the pressure con-
tribution, the viscous dissipation, the SGS-contribution and the effect of the com-
mutator error, respectively. The contribution due to the pressure, e, was shown
to be negligible at the low Mach number (M = 0.2) considered in the DNS [141].
In case 2 is the entire domain (£3) the mean dissipation &pean is zero in view of the
boundary conditions. As mentioned above, by restricting the integration domain
to the homogeneous z1 and x3 directions, the definitions (3.23)-(3.28) reduce to
local dissipation — or transport terms.
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Figure 3.2: (a) Lo-norms of the decomposition (3.17) in the streamwise direction
and (b) contributions to the resolved kinetic energy dissipation of the mean con-
vective flux (dash-dotted), SGS-flux 9;7;; (dashed) and commutator error (solid).
We use a = 3/4, 8 = 10 and consider the field at ¢ = 60. The variations of the
filter-width as function of x5 are depicted by the dotted line.

The evaluation of the various closure terms and diagnostics from the DNS-data
employs different filters and filter-widths. Moreover, different numerical methods
may be adopted in the post-processing of the data. The basic methods adopted
in this chapter are formally second order accurate. For the numerical integration
the trapezoidal rule has been applied. If data are required at locations not con-
tained in the DNS-grid, linear interpolation is used to obtain approximate values.
Finally, derivatives are approximated using second order central finite differences
with mesh-spacing A, /4 which is equal to the minimal filter-width incorporated.
Next to the basic combination of second order methods we also repeated part of
the analysis using fourth order accurate methods. We observed small changes in
specific results. However, turning to such higher-order methods does not lead to
alterations in the conclusions that may be drawn. Therefore, in the sequel we will
only present results obtained using the second order methods.

After these preparations we next present the results of the a priori analysis, con-
centrating on the decomposition (3.17) and the kinetic energy dissipation rate
(3.23). First, we turn to symmetric second order filters and consider different non-
uniform filter-widths to provide a point of reference. Then we consider effects of
skewness in combination with the top-hat filter. Finally, we introduce a class of
high-order filters, based on the Gaussian filter, and explicitly calculate the size of
the SGS-fluxes and the commutator errors for increasing filter-order.
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Magnitude of commutator errors for second order symmetric filters

In figure 3.2 results are shown in case the symmetric top-hat filter is applied to
the field at ¢ = 60 and the non-uniform filter-width is determined by o = 3/4
and 0 = 10. For the Lo-norms only the results from the field in the streamwise
direction, i.e., originating from 0;(uju;), are shown. The Lp-norms corresponding
to 0j(ugu;) and 0j(usu;) display similar behavior and are not shown. The graphs
in figure 3.2(a) indicate that the La-norm of the commutator error is about an
order of magnitude smaller than the SGS-flux 0;7;; for this specific case. The
SGS-flux itself is again one order of magnitude smaller than the mean convective
flux 0j(w1w;). The latter finding is consistent with previous observations made for
this flow [137].

Regarding the contributions in figure 3.2(b) the SGS-flux represents almost all the
dissipation of resolved kinetic energy. In addition, the net positive and negative
contributions originating from the mean convective flux are seen to approximately
cancel, confirming that €,ean = 0 if integrated over the entire low-domain. Finally,
the contribution from the commutator error is found to be positive and therefore
a dissipative term in this case. The location of maximum local contribution to
the commutator error dissipation coincides approximately with the location where
A’ is maximal, consistent with the basic analysis in the previous section. The
local contribution to the SGS-dissipation £ggg is maximal near the centerline of
the flow. Similarly to the La-norm, the maximum contribution to the commutator
error dissipation ecy is about an order of magnitude smaller than the maximum
of SGS-contribution.

To further classify the type of contributions to the dynamics of the resolved kinetic
energy we next distinguish the explicit sources of dissipation and production. The
positive e and negative contributions e~ for the SGS-flux are defined as:

€§GS(:E2) = /QmaX(O,ﬂiajTij)dl‘ldl‘g, (329)
esas(®2) = /Qmin(oﬂz‘aﬂz‘j)dxldx& (3.30)

Likewise, we can formulate 5éE and ey, for the commutator error. Production e~
is often associated with “backscatter” in literature. In figure 3.3 the production
and dissipation corresponding to the SGS-fluxes and commutator errors are shown.
In both cases the dissipation is larger than the production, resulting in a net dis-
sipation as already shown in figure 3.2(b). The ratio between the total production
and total dissipation, defined as the integral over x5 of ¥ (), is observed to be
about the same for the SGS-fluxes and the commutator errors.

Next we compare different non-uniform filter-widths Ag(z2). In view of (3.9),
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Figure 3.3: The explicit dissipation (solid) and production (dashed) contributions
to the resolved kinetic energy dissipation due to (a) the SGS-flux and (b) the
commutator error.
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Figure 3.4: The Lo-norm of the commutator error in the streamwise direction at
t =60: (a) @ = 1/4 (dashed), 1/2 (dotted) and 3/4 (solid) with g fixed to 10; (b)
« fixed to 3/4 and 8 =5 (dash-dotted), 10 (solid), 30 (dashed) and 60 (dotted).
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the second order top-hat filter should give rise to a commutator error that scales
with AA’. The influence of A’ on the commutator errors can be controlled by
varying the parameters « and 3. In figure 3.4 the Lo-norms are shown for different
combinations of o and . An increase in either « or § corresponds to an increase
in A’. Correspondingly, the larger and spatially more localized variations in the
filter-width lead to considerable increases in the commutator errors. This may
readily be inferred from figures 3.4(a) and 3.4(b).

In complex turbulent flows one may wonder which strategy of spatially varying
A is best. On the one hand one may select a fairly gradual transition between
a region of large/small filter-width to a nearby region of small/large filter-width.
One may think of a case as represented by 8 = 5 in figure 3.4(b). Then, A’ is small
and so is the commutator error; no explicit modeling of this contribution appears
to be required. This seems to be the most favorable strategy, but one has to realize
that it is also computationally the most expensive. A gradual transition requires
a wide transition-region which may be wasteful in terms of number of grid-points.
On the other hand, if a relatively sharp transition is considered, e.g., illustrated by
B = 60, the derivative A’ may become sufficiently large to lead to a commutator
error which may no longer be neglected. In fact, the commutator error can locally
become as important as the SGS-fluxes and correspondingly the commutator error
should be explicitly modeled. Depending on whether or not adequate models for
the commutator error contributions can be formulated, one may be tempted to
adopt the ‘safer’ more expensive option or the more efficient option which requires
a commutator error model.

We next proceed by considering the effect of skewness of the filter and subsequently
turn to higher order filters. In the latter case we will explicitly compare the mag-
nitude of the commutator errors with that of the SGS-fluxes for increasing order
of filtering.

Skewness and commutator errors

An efficient implementation of non-uniform filters gives rise to skewed filters in a
very natural way. Consider filtering at a grid-location z;. In one dimension this
can be obtained by integrating over the interval [z;_,,2;,] where m and n are
suitable integers. Even if the filter corresponds to a ‘symmetric’ choice of points
around z;, i.e., m = n, the non-uniformity of the grid in physical space will imply
a-symmetry and non-zero skewness. Skewed filters are virtually unavoidable close
to solid walls while in other flow-regions skewness arises quite naturally from grid-
non-uniformities, if one uses this grid-based implementation. Strictly speaking,
grid and filter-width non-uniformities do not have to correspond directly to each
other and non-uniform filters can also be defined on uniform grids, as is considered
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Figure 3.5: (a) Lo-norms of the SGS-fluxes and commutator errors in the stream-
wise direction and (b) contributions to the resolved kinetic energy dissipation at
t = 60 for the a-symmetric top-hat filter in case v = 0 (solid), v = 0.25 (dash-
dotted), v = 0.50 (dashed) and v = —0.50 (dotted). The upper set of curves
correspond to the SGS-fluxes, the lower set of curves denote the effect of the
commutator errors.

here. Either way, this sketch illustrates that typical filters in complex flow domains
are likely to be skewed and effects of skewness deserve to be studied in detail.

In the previous section it has been shown that skewness of a filter can have a
considerable effect on the size of the commutator error. Skewness implies a decrease
of the order of the filter compared to the associated symmetric case. For filters that
are second order at zero skewness, nonzero skewness leads to a commutator error
of order O(A"). Here, we will explicitly calculate the size of the commutator errors
for the skewed top-hat filter as defined in table 2.1 with v # 0. For simplicity, we
consider the case of constant skewness, which is adequate to illustrate the main
effects.

In figure 3.5 the Lo-norm and local energy transport £(z2) of the commutator error
and the SGS-fluxes are shown as function of the shift-parameter . From the series
expansion of the SGS-stress it was concluded that this term was not affected by
a non-zero first moment. In figure 3.5(a) we observe indeed that the size of the
SGS-flux is largely unaffected by the value of the shift v+ = M. This is in sharp
contrast with the Lo-norm of the commutator error for which a significant increase
is observed with increasing |7y| as predicted by the analytical estimates obtained in
the previous section.
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Additional illustrations of skewness in relation to the commutator error can be
observed in figure 3.5(b), where the local contributions eggg(x2) and ecg(z2) are
shown. The SGS contributions are quite unaffected by the skewness of the filter,
while the commutator error effect increases with ||. In case skewed filters are ap-
plied the commutator error contribution to the resolved kinetic energy dissipation
looses its symmetry across the centerline at o = 0. The resulting commutator
error effect can even change sign, either above or below the centerline depending
on v, which indicates that not only the size but also the dynamical consequences of
the commutator error may depend considerably on the skewness. In the following
chapter it will be shown that symmetric filters give rise to dissipative effects and
non-zero skewness is associated with additional dispersive contributions [123, 125].

Finally, we observe that in certain regions of the flow-domain the effects of the
SGS-fluxes and the commutator errors are of comparable magnitude in case the
skewness is sufficiently large. So, unlike most cases involving symmetric second
order filters, strongly skewed lower order filters imply that one can no longer ignore
the explicit inclusion of commutator errors in the subgrid modeling.

In the following paragraphs higher order filters will be considered and the decrease
of the commutator error with increasing filter-order will be compared with that of
the SGS-fluxes. First the construction of a specific class of higher order filters will
be described. Estimates for the commutator error and SGS-fluxes will subsequently
be discussed.

Construction of higher order filters

In literature various classes of higher order filters have been proposed. Vasilyev
et al. [133] constructed a class of filters, which was later extended to complex
geometries by Marsden et al. [87] and by Haselbacher and Vasilyev [64]. These
filters are based on a non-uniform grid to achieve non-uniform filtering. In our
application here, we would prefer to be able to adopt a wide range of different non-
uniform filter-widths without having to change the grid each time, i.e., achieve a
level of independence between filter-width and grid non-uniformities. To arrive at
such a formulation the so-called Daubechies construction is used [26].

The construction of Daubechies filters relies on a wavelet-type transformation of
a general base filter Go(s). We require that all moments M,, r > 0 of the base-
filter G(s) exist and that the base-filter is properly normalized, i.e., My = 1. The
desired higher order filter-kernel Gy (s) is expressed as,

n—1
Gn(s) = ; d;Gy (j " 1> : (3.31)
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N | {d;} A,
2 | {1} 1.023A
4 1
4 | {3, -5} 0.805A
3 _3 1
6 5, _E7 % 0-740A
8 _2 8 1

Table 3.1: Resulting coefficients {d;} for several lower order filters. The effective
filter-width A, corresponds to higher order filters using a Gaussian filter as base-
filter.

where d; are appropriate constants, which will be determined next taking (3.11)
into account. We notice that the filter-kernel G5 has a much wider support com-
pared to the original base-filter since s is divided by j + 1.

We selected the Gaussian filter as base-filter and restrict ourselves here to sym-
metric filters. By definition the higher order filter-kernel inherits the symmetry
properties of the base-filter and the odd moment My, 1 of G are zero. We define
n = N/2 in (3.31). The requirements for higher-order filters (3.11) give rise to the
following system of equations for the unknown coefficients {d; }:

20—/ led G0<

fori =0,...,n—1 and Msy; are the moments of the base-filter. For second-order
base filters My; # 0 and by definition My = 1. Hence (3.32) can be multiplied by

n—1
) ds = M Y _d; (j +1)*1,
7=0

(3.32)

M{il and an n x n linear system Ad = b for d = [do, di,..., d,—1] results where
A and b are defined as,
Ay = (G + 1%, bi = Sio, i,j=0,...,n—1. (3.33)

It can be shown that the matrix A is invertible. For various n explicit construction
of the higher order filters can be obtained and in table 3.1 resulting coefficients are
given for several higher order filters as well as the resulting effective filter-width
A¢ (2.14). The previously mentioned decrease of the effective filter-width A.(N)
with increasing order can clearly be observed.

The moments Ms; depend on the specific choice for the base-filter. However,
the coefficients {d;} follow from Ad = b from which these moments have been
removed; consequently the coefficients {d;} are independent of the specific choice of
the symmetric base-filter. This construction can also be developed for a-symmetric
filters in which case A;; = (j+1)"! and n = N. In figure 3.6 some resulting higher
order filters G n(s) as well as their Fourier-transform Hy(w) are depicted. In figure
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Figure 3.6: a) Filter kernel G and b) Fourier transform Hy of several higher
order filters using a Gaussian base filter: 2nd order (solid), 4th order (dotted)
and 8th order (dashed).

3.6(b) we see that with increasing order more and more modes are quite unaffected
by the filter confirming the reasoning put forward on page 52 that filtering becomes
less and less effective with increasing order. In figure 3.6(a) we observe that as the
desired filter-order is increased the filter-kernel is seen to develop characteristic
changes of sign which imply that the realizability conditions for the turbulent
stress tensor are no longer maintained [142].

For the evaluation of the DNS-data the integrals are numerically approximated
using the trapezoidal rule and the discrete filter can be formulated as,

n4
u; = Z Wi Uit g, (3.34)

j=—n_

where the filter-weights w;; are given by,

Tj+1 — Tj—1 1 G T — T4
i = . 3.35

wy =B on (R (3:35)
In this approach the numbers n_ and n4 should be chosen fairly large in order
for the moments M,, r = 1,..., N — 1 to be accurately captured. We selected
n_ = ny = 96, i.e., integrate over all points available in the DNS-data [141, 144].
The discrete moments

Mo~ 3wy (%) , (3.36)

j=—n_
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Figure 3.7: Contribution to the dissipation of the resolved kinetic energy caused
by (a) the SGS-flux and (b) by the commutator error at ¢ = 60 for higher or-
der filters; second order Gaussian (solid), fourth order (dotted) and sixth order
(dashed). Also depicted are the results obtained with the second order top-hat
filter (circles).

were found to be smaller than 107, for all moments 7 =1,...,N—1,upto N =8
for the cases considered. Hence, up to eighth order filtering is achieved in this way.

Magnitude of SGS-fluxes and commutator errors as function of filter-
order

In section 3.2 it was shown that an N-th order filter gives rise to a commutator
error which scales with O(A’AN=1). Also, for N > 2 the SGS-stress 7;; scales
with O(AY), which leads to a SGS-flux 9;7;; with contributions of O(AY) and
O(A’AN~1). Hence, in regions where A’ is sufficiently large, both SGS-flux and
commutator error display identical dominant scaling in A controlled by the order of
the filter. Consequently, both contributions may require explicit subgrid modeling
in such regions. To further illustrate this, we will next extend the dominant scaling
analysis with the calculation of the actual size of the SGS-flux and commutator
errors in turbulent mixing. We will use the symmetric high order Daubechies filters
with non-uniform filter-widths constructed above.

In figure 3.7 the local contributions eggs and ecg are shown for several higher
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order filters. First, we compared the Gaussian filter with the symmetric top-hat
filter. These two second order filters are shown to yield only minor differences,
confirming findings in [142]. In figure 3.7 the strong reduction of the contribution
of both the SGS-flux and the commutator error with increasing filter-order can be
observed. Roughly speaking the maximal local SGS-flux contribution decreases by
about 30% for every increase of the filter-order by two. The size of the commutator
error contribution is seen to be reduced slightly more rapidly with increasing order
of the filter. When N changes from two to four the maximum commutator error
contribution decrease by about 35% and by an additional 50% when N is increased
to six. We hence clearly observe that both the SGS-flux and commutator error
contributions reduce in a fairly comparable way with increasing order of filtering.
The specific implementation of the higher order filters used here may induce some
inaccuracy in the evaluation of the higher order cases. This does not permit a fur-
ther quantitative evaluation of the observed behavior. However, the general trends
are sufficiently strong to illustrate the predicted decrease of both contributions as
N increases, which was the central point of this analysis.

The use of higher order filters not only influences the dominant scaling of the
subgrid terms but it may also affect the construction of acceptable subgrid models.
It is not necessarily true that SGS-models which are accurate in combination with
ordinary second order filters work equally well for higher order filters. For example,
the standard Smagorinsky model [111, 91] contains an explicit scaling with A2
which also carries over to the popular dynamic model [40]. In addition, the well
known gradient or Clark model is explicitly based on filters with a non-zero second
moment [141, 23]. In case higher-order filters are adopted to try to reduce the
explicit influence of the commutator error, it appears unavoidable that one should
also incorporate corresponding changes in the basic model-assumption for the SGS-
stresses, e.g., correct the model to comply with the theoretical scaling. Similarity
models such as Bardina’s model [7] or Leray’s model [43] do not require such
an explicit alteration; the proper dominant scaling is already contained in the
definition of these models.

The analysis in this and the previous section has indicated that skewness of a
filter, which is often unavoidable, can have a strong influence on the size of the
commutator error relative to the SGS-flux. Moreover, sufficiently rapid variations
in the local filter-width may induce local situations in which the commutator error
is no longer negligible compared to the SGS-fluxes. Finally, the use of higher
order filters does not offer an independent control over the size of either type of
subgrid terms. Hence, in various situations or for the sake of retaining appropriate
efficiency in LES of complex flows, one has to resort to explicitly developing specific
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models for the commutator error. We will present an analysis of commutator error
models in the next chapter.

3.4 Concluding remarks and discussion

In this chapter we presented results of research into the commutator error in LES
by investigating it scaling with the gradient of the filter-width and the order of
the filter. The commutator error arises in case a filter with non-uniform filter-
width is applied to the Navier-Stokes equations. The dynamic consequences of the
commutator error received comparably little attention in literature. However, for
the application of LES to practical situations in which complex flow phenomena
are present in a complex flow domain, the use of a filter-width which depends
on space and/or time is considered very advantageous [54]. An investigation of
the associated commutator error is a pre-requisite before filters with non-uniform
filter-width can be applied with confidence.

For incompressible flow the main commutator error arises from filtering the con-
vective flux 0;(u;u;). It can be expressed as:

Cj(uiuj) = 8juiuj — 8juiuj, (3.37)

and should be directly compared with the SGS-fluxes 0;7;; involving the turbulent
stress tensor 7;;. Using Taylor expansions the influence on the commutator error
arising from the filter-width A, its spatial derivative 0;A or the order of the filter,
has been established. For general N-th order filters the commutator error was
shown to scale with A’AN=1. For common filters such as the symmetric top-hat
and Gaussian filters this implies a scaling with A’A. The scaling even reduces
to O(A’) for first order filters which arise from skewed versions of popular second
order filters. From a similar analysis the SGS-stress tensor 7;; scales with O(AN)
in case N > 2 and with O(A?) for N = 1. This yields an SGS-flux 9;7;; that scales
with a formally dominant contribution of O(A’AN~1) and sub-dominant term of
O(AMN). In case |0;A| is sufficiently large this scaling analysis indicates that both
the commutator error and the SGS-flux behave in the same way. In fact, this
analysis suggests that the use of higher order filters does not allow an independent
control over the commutator error compared to the SGS-flux, as was hinted at
before [131, 133]. Moreover, for skewed filters, additionally with sharp variations
in filter-width the explicit modeling of both closure terms appears unavoidable.

Using DNS-data of the temporal mixing layer [141] the magnitude of the com-
mutator error and the SGS-flux was explicitly calculated in order to complement
the dominant scaling analysis. The use of turbulent flow data allowed for a quan-
titative comparison between the dynamical importance of the commutator error
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and the SGS-stress. The effect of skewness of the filter on the commutator error
showed to be considerable in certain cases, consistent with the observation that
the order of a filter is reduced by one if the kernel is skewed. For the commonly
adopted top-hat and Gaussian filters this is especially important because the SGS-
stress is unaffected by a non-zero first moment M;. The a priori analysis reveals
that strongly skewed filters induce a commutator error which becomes locally as
important as the SGS-stress and thus both closure terms would require explicit
modeling. Likewise, the commutator error requires explicit modeling in case |0;A|
becomes sufficiently large. Finally, the influence of the order of the filter on the
magnitude of the closure terms was determined and the global trends were found
to be in line with the scaling analysis.

Since very little developments have been made in the explicit modeling of commu-
tator errors, it is natural to consider under what conditions these terms can safely
be neglected. Unlike suggestions made in literature that this can be achieved by
adhering to higher order filters, an independent control over the size of the commu-
tator errors compared to the SGS-fluxes is obtained only by properly restricting
spatial variations of the filter-width. Keeping the gradient of the filter-width small
presents itself as a favorable strategy for avoiding the commutator error. Unfortu-
nately, with this option one remains quite close to the uniform filter-width situation
and this does not offer a flexible and computationally effective adaptation to com-
plex flows in complex domains.






Chapter 4

Lagrangian dynamics of
commutator errors

In this chapter' we will introduce and discuss the approximate Lagrangian behav-
ior of the commutator error. After a short introduction, in section 4.2 the dynamics
of the resolved kinetic energy is introduced and leads to the Lagrangian interpre-
tation of the dynamics of the commutator error. A priori testing of this dynamical
behavior in terms of the transport of kinetic energy is presented in section 4.3.
Section 4.4 is devoted to the analysis and testing of several models for the com-
mutator error C;(u;u;) including a model based on the Lagrangian interpretation.
Finally the results are summarized in section 4.5.

4.1 Introduction

In recent years the demand has become stronger for LES to be extended to realistic
flow situations as encountered, e.g., in industry, aerodynamics and local weather
prediction. To efficiently extend the capabilities of LES to such complex flow
situations we require the filter-width to become non-uniform, dependent on space
and/or time. With the introduction of a non-uniform filter additional closure
terms emerge generally referred to as commutator-errors (2.29) [54, 51, 122, 47, 52].
Compared to the SGS-stress 7;;, the commutator-error received little attention in

!This chapter is largely based on Van der Bos and Geurts [123].
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literature. However, as shown in the previous chapter, the commutator-error can
become dynamically important in case the local variations in the filter-width are
strong enough.

In this chapter an explicit Lagrangian interpretation of the dynamics of commu-
tator-errors is provided which directly suggests a corresponding model for the com-
mutator error. We examine the effect of commutator-errors on the transport of
resolved kinetic energy. It will be shown that the commutator-error can be asso-
ciated with the apparent local creation and destruction of resolved flow-features
in case the filter-width is decreased or increased along a flow-path respectively.
As a consequence, the amount of kinetic energy which is locally resolved varies
when filter-width variations are encountered along a flow-path. The Lagrangian
interpretation suggests to model the commutator-error in terms of the material
derivative of the filter-width. This model may capture both spatial as well as
temporal variations in the filter-width. We will formulate the explicit Lagrangian
commutator-error model and test it against other Commutator-Error-models (CE-
models) that are based on similarity assumptions instead (section 4.4) [51, 122, 47].

The type of non-uniform filter in the definition of the commutator-error explic-
itly affects the type of dynamic contributions of these terms. We will investigate
both the commonly used symmetric filters as well as skewed filters. Symmetry or
skewness of a filter is associated with the filter-kernel being an even function or
not. The use of skewed filters is sometimes unavoidable, e.g., when the local filter-
width is defined in terms of a fixed number of grid-intervals. This implies smaller
filter-width in case the grid is locally refined, but also implies skewness of the fil-
ter. As shown in the previous chapter the dynamic effect of the commutator-error
becomes significantly larger when skewed filters are used. In this chapter both the
dispersive and dissipative effects associated with filter-skewness [54, 51, 133] will
be included explicitly in the Lagrangian modeling. A priori testing of these models
using simulation data of turbulent mixing establishes that explicitly accounting for
skewness is essential in order to maintain acceptable accuracy.

The organization of this chapter is as follows. In section 4.2 we consider the dy-
namic effect of a non-uniform filter-width on the evolution of the resolved kinetic
energy. We propose, in addition, a new explicit parameterization for the transport
of resolved kinetic energy. In section 4.3 we describe the a priori testing of this
model for the transport of resolved kinetic energy. Section 4.4 contains the results
of a priori testing of the proposed Lagrangian model for the commutator-error
C;(uju;) as arises in the momentum equations against CE-models based on simi-
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larity assumptions. Finally, in section 4.5 some concluding remarks are collected.

4.2 Resolved kinetic energy dynamics: consequences
of non-uniform filtering for dissipation and disper-
sion

In this section we concentrate on the local transport of resolved kinetic energy for
incompressible flow. First, we derive the transport equation for resolved kinetic
energy in case the filter is spatially non-uniform. Then, through a ‘Lagrangian’
interpretation of the non-uniform filtering, the importance of skewness and of spa-
tial variation of the filter-width is identified (subsection 4.2.1). Finally, using a
single-mode analysis, the explicit dissipative and dispersive contributions of the
commutator error are illustrated. Combined with the Lagrangian interpretation of
the commutator errors, this points toward a proposition for the explicit modeling
of these effects (subsection 4.2.2). The analysis of the kinetic energy dynamics
in actual direct numerical simulation of developed turbulent mixing is postponed
until section 4.3.

To characterize the various contributions to the evolution of resolved kinetic energy,
we focus on the local transport denoted by ¢ = —8&%%@). The local transport
of resolved kinetic energy is related to the dissipation rate of kinetic energy &
introduced in (3.19) by € = fQ 1 dx. Hence the variable v truly captures the local
effects of the various terms. Starting from the filtered momentum equation (3.5)
and taking the inner product with w; one can obtain an expression for the transport
of resolved kinetic energy [123],

1
P = —ﬂiaj (ﬂzﬂ]) — u;0p + Em@jﬂi — ﬂiajﬂ'j
1
—ﬂicj' (uzu]) — Uzcz(p) + Eﬂz Cj(é)]uz) — 8jCj (ul)} . (4.1)
Analogous to (3.23) we may then decompose v as,

¢ = wmean + wp + wvisc + ¢SGS + wCE- (4.2)

Here we identify the individual contributions associated with the mean velocity-
field, pressure, viscous stresses, SGS-stress and the ‘combined commutator error’
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respectively. These contributions are defined explicitly as (compare with (3.25)-
(3.28)).

meean = U 8]- (ﬂlﬂ]) - %maﬂ]} = %8] (ﬁiﬂiﬂj), (43)
Yy = U; 0;p, (4.4)

1
Pvise = _ﬁai 0;;, (4.5)
Ysas = u; 05T, (4.6)
vep = W [Cj(upuy) — 5uiCj(uy)). (4.7)

As already discussed on page 56 the additional terms in %yean and oy are due
to the “compressibility” d;u; = — Cj(u;) that is introduced with the use of
a non-uniform filter. Regarding the transport of kinetic energy governed by the
commutator error ¥cg we will concentrate on the contributions associated with
the convective flux. Hence, terms involving C;(p) and Re™*[C;(0ju;) — 0;C;j(u;)] are
not included in the discussion.

4.2.1 Interpretation of non-uniform filtering

In this subsection we first illustrate the application of a non-uniform filter in one
spatial dimension. In particular, we concentrate on sine-waves and focus on the
local quality of resolution in relation to the wavenumber of the signal and the
local filter-width. Moreover, skewness is included and shown to affect the phase
of the filtered signal. Subsequently, a Lagrangian interpretation of non-uniform
filtering is formulated which characterizes the situation in three spatial dimensions.
This provides a basis for explicit modeling of the corresponding commutator error
dynamics that will be considered momentarily.

The application of a filter effectively removes flow-features that vary sufficiently
rapidly on the scale of the local filter-width. The appropriate parameter to quantify
this for symmetric filters is kA(x) where k denotes the wavenumber of the signal.
In figure 4.1 we illustrate the effect of abruptly varying A from one value in the first
half of the domain to another value in the second half. For illustration purposes, if
the sine-wave is reduced in amplitude by about 50% or more, we will refer to it as
‘subgrid’ while it is considered ‘resolved’ otherwise. For the non-uniform top-hat
filter considered in this example this rough identification implies that if kA(x) <
1/2 then the corresponding signal may be considered locally resolved. Specifically
in this example, we notice that, e.g., the £ = 2 mode can be considered resolved
throughout the domain while the mode at k£ = 12 clearly is subgrid everywhere.
The interesting modes are in between, e.g., at k& = 6, which may be considered
subgrid in part of the domain and resolved in other parts of the domain.
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Figure 4.1: Filtered (dashed) and unfiltered (solid) sine-waves f(z) = sin(2rkz)
with (a) &k = 2, (b) k = 6 and (¢) k£ = 12 in the domain [0,1]. The filter-
width A(z) (dotted) is non-uniform and specified as A(z) = 1/5 for < 1/2 and
A(xz) =1/10 for > 1/2 with a short transition region around = = 1/2.

We may associate the actual effect of a non-uniform filter with the transition from
‘resolved’ to ‘subgrid’ for specific modes. Before this transition from ‘resolved’ to
‘subgrid’ is used to clarify the dynamic behavior of the commutator error C; first
the particular effect due to filter-skewness is illustrated.

Effect of skewness

The effect of skewness of a filter can most readily be illustrated by applying the
skewed top-hat filter introduced in table 2.1 to a single sine-wave u = sin(27kx).
Direct evaluation of the filter yields the filtered velocity given by:

u(x) = A(kA) sin(2rk(x + A(z)7)), (4.8)
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Figure 4.2: Filtered (dashed) and unfiltered (solid) sine-waves f(z) = sin(2wkx)
with (a) k=1 and (b) k£ = 2 in the domain [0, 1]. The filter is maximally skewed
with v = 1 and the filter-width A(z) (dotted) is non-uniform and specified as
A(z) = 1/5 for x < 1/2 and A(zx) = 1/10 for x > 1/2 with a short transition
region around z = 1/2.

where the damping factor A depends on kA as,

sin(rkA)

A(kA) = A

. (4.9)

We observe that the amplitude reduction for the skewed top-hat filter is not in-
fluenced by explicit skewness. Instead, the effect of explicit filter-skewness (i.e.,
v # 0) is clearly recognized by a local phase-shift. This implies that the filtered
signal is either lagging or leading the original wave depending on A-~. In figure 4.2
we illustrate the case in which v = % This clearly illustrates that the phase-shift
by which the filtered wave lags behind the unfiltered signal is reduced from ~/5 to
+/10 when passing the non-uniformity from left to right. Hence, the reduction of
filter-width in the direction of the wave propagation implies next to an increase in
amplitude of the resolved wave also a reduction of phase-shift when v # 0. This
illustrates clearly both dispersive and dissipative effects arising from non-uniform,
skewed filtering which was already recognized in [51, 133].

We will next extend the interpretation of commutator errors to three spatial di-
mensions.
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Figure 4.3: An illustration of filter-width variations which induce commutator
errors that represent the apparent creation and destruction of scales associated
with variations in the local resolution of the flow. An increased local resolution in
the direction of the flow, corresponds to an apparent creation of small-scale flow-
structures while a reduced resolution may be associated with the annihilation of
the corresponding flow-structures.

Lagrangian interpretation of commutator errors

In figure 4.3 a non-uniform grid is sketched which can resolve different ranges of
wave-numbers depending on the location in the grid. If we consider a particular
flow-path as indicated then for z < x, all scales up to kcoarse may be resolved
while for z, < = < xp the filter-width is decreased such that scales in the range
[kcoarses kfine) also become available as resolved scales.

The local effect corresponding to a decrease of the filter-width can be interpreted
as an effective production of resolved kinetic energy. Similarly, if the non-uniform
filter-width is increased, this should result in a decrease of resolved kinetic energy,
e.g., contributing to an effective dissipation. Correspondingly, the commutator
errors can be associated with the apparent local creation/destruction of turbulent
flow scales if the filter-width is decreased/increased along a flow-path. Hence,
the contributions arising from the commutator error are directly linked to the
magnitude and sign of changes in the filter-width in the direction of the local
flow-path. Large variations in A do not necessarily imply large commutator error
contributions in an actual simulation; only if these changes occur in the direction
of the local flow can commutator error dynamics become essential. This suggests a
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direct modeling in terms of the material derivative of A which contains the central
contribution u;0;A, expressing exactly this observation.

4.2.2 Single-mode analysis of commutator error dynamics

In this subsection we will consider the effect of non-uniform, skewed filtering and
specify in some detail the commutator error associated with individual Fourier-
modes in a solution. This will further specify the connection with the material
derivative of the filter-width, argued in the previous subsection.

In the single-mode analysis of the commutator error we assume that u = exp(tkz).

Application of the skewed top-hat filter yields

kA
2

Jereran — a0 4 Ay, (4.10)

T = A :

with damping function A given by (4.9). The modified wave-number k', as in-
troduced by Ghosal and Moin [54], may be used in quantifying the commutator
error. Specifically, k¥’ is defined through d,u = ku. For symmetric filters the
commutator error may be shown to be diffusive [54]. In the following, we will
derive the modified wave-number corresponding to skewed filters and show that
both diffusive and dispersive contributions arise in that case [133].

From (4.10) one can easily derive that

0,7 = 8m<A(%)u(:c+A’y)) - F(%)

!
k:2A u+ (1 4+ Ay)ka, (4.11)

where, for the skewed top-hat filter, the function F' is given by

P5) - - (S () e

Correspondingly, using the definition of the modified wave-number k', we find

+ (14 Aly)k. (4.13)

, kAN kA’
= _ZF(T) 2
This expression of the modified wave-number k' contains the expression found
in Ref. [54], as well as a dispersive contribution YA’ which is encountered for
non-zero skewness v # 0 [133]. We will next derive the single-mode expression for
% Cy(u?) and make the connection with the material derivative of A more explicitly.
Extended to three dimensions @ C,(u?) is closely related to @;C;j(u;u;) which is the
main contributor to the transport of resolved kinetic energy by the commutator

error Ycg.-



4.2. Resolved kinetic energy dynamics 79

The single-mode expression for the commutator error of the convective flux C,(u?)
is given by,

Cx(u2) 8I62zk:x _ axe2zka: — 8306211650 — Oy (A(kA)Gsz(m+A'y))

= keZkr — k(1 4+ Aly)erzkr + F(kA)e2k(z+Ay), (4.14)

This may be rewritten as,

—_— / —_—
Co(u?) = —Ay0u?+ %F(k‘A)uQ, (4.15)

such that uC,(u?) is given by,

WCy(u?) = u <—7W+ F(k:A)%) A’ (4.16)

In (4.16) we recognize two distinct contributions which we will discuss next.

The interpretation of the commutator error given in the previous subsection sug-
gests to parameterize ¢cg in terms of the material derivative of Aj(x) along a
flow-path, i.e., DiA; = 0;A; + U0k A; = urOrA;j in case A; does not explicitly
depend on time t. By defining L., and T, as characteristic length and time-scales,
one can readily verify that D;A; has dimension LT, =}, whereas the dimension
of 1cr equals (LooT')3L}. Accounting for the proper physical dimension the
following specific parameterization for ¥ cg is evident:
a?
wCE ~ A— ukﬁkAj = fo, (4.17)

J

where [1]? = %;u;. The front factor F(kA) in (4.16) further quantifies this contri-
bution and shows that this term is small in case kA < 1, as is to be expected for all
subgrid contributions. In the sequel, we will use the notation &y to represent this
part of the commutator error. Expression (4.17) includes the material derivative
of In(A;) which is a measure of the relevance of the commutator error relative to
the turbulent stresses [47]. Inspection of (4.16) indicates that skewness provides an
additional contribution ~ 9d,u? D;A which has a similar interpretation as a ratio
between the square of a characteristic velocity and a length scale multiplied by the
material derivative of the filter-width.

An explicit parameterization for the commutator error contribution can be ob-
tained by observing that u2/A = w2/A + O(A) and d,u? = 9,72 + O(A’) when
~v # 0. Guided by (4.16) the following model for the transport of resolved kinetic
energy is proposed:

Yep = E= o — i, (4.18)
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with ¢y and ¢; constants to which we return momentarily, and £; given by

olul®> DA;
§1 = :
J 833j Dt

(4.19)

In the next section we will consider the kinetic energy dynamics associated with
general non-uniform, skewed filters, applied to turbulent mixing and use statistical
analysis to verify (4.18).

4.3 Commutator-error energy dynamics in turbulent
mixing

In this section we will first describe the statistical evaluation method with which
we will quantify the agreement between the actual ¢ cr and its explicit Lagrangian
modeling hypothesis (4.18). This will be collected in subsection 4.3.1. Subse-
quently, we will present results for the kinetic energy dynamics obtained from
evaluating the non-uniformly filtered direct numerical simulation database which
was already introduced in subsection 3.3. In the presentation of these results we
distinguish between symmetric and skewed filters. In subsection 4.3.2 we turn to
symmetric filters in which case £ reduces to ;. Subsequently in subsection 4.3.3
we will extend the testing to skewed filters and focus on the effectiveness of the
proposed additional contribution £;. The consequences of the Lagrangian model-
ing hypothesis for the direct representation of the commutator errors as arise on
flux-level in the momentum equations form a separate issue that will be presented
in section 4.4.

4.3.1 Temporal mixing layer and statistical evaluation method

In order to assess the Lagrangian modeling hypothesis for the commutator error
energy dissipation rate ®¥cg we will use turbulent flow in a temporal mixing layer
at Reynolds number Re = 50. The details of this particular DNS as well as the
filter-width have already been given in subsection 3.3. By correlating ¢¥cr with
the proposed model, we may illustrate the quality of the Lagrangian hypothesis,
both for symmetric as well as for skewed filters.

The filter-widths A; are defined in a similar way as in the previous chapter, i.e.
the filter-widths in the homogeneous x1 and x3 directions are constant, while the
filter-width associated with the xs-direction is non-uniform and clustered near
the centerline (see equation (3.16)). However the parameter « which controls
the ‘depth’ of the filter-width modulation is kept fixed to o = 3/4. Again the
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filtered quantities needed in the evaluation of the kinetic energy dynamics are
obtained using the composite trapezoidal rule applied to the top-hat filter. The
required spatial derivatives are approximated using second order accurate central
finite differencing with grid-spacing A, /4.

To test the kinetic energy parameterization expressed in (4.18) we will interpret
Yog and € as stochastic variables and quantify their main features using a statistical
analysis. Since the filter is non-uniform in the xs-direction only, the model ¢
reduces to,
Ui — -\ = Av
f == <Co T — (1 ygaguiui> UQAQ. (420)
2

In order to assess the quality of the Lagrangian model we will focus on the cor-
relation between ¢cr and . Moreover, we determine the Probability Density
Function (PDF) P(¢, ¥ cg) using a standard binning procedure for these two quan-
tities which expresses their connections in further detail. We will consider results
of this evaluation both for symmetric as well as skewed filters.

4.3.2 Correlation and PDF of energy dynamics model for sym-
metric filters

In this subsection we test the modeling of ¥cr for symmetric filters in which case
& reduces to &y. In subsection 4.3.3 we will extend the testing to skewed filters and
focus on the effectiveness of the proposed additional contribution &;.

The correlation between ¥cg and £ for symmetric filters at different filter-width
non-uniformities was studied. Quite low correlation was observed in the initial,
laminar and transitional stages in cases where the filter-width is only mildly non-
uniform but over quite an extended region, e.g., corresponding to 8 =5 or § = 10.
This low correlation is associated with the fact that either AL ~ 0 in the region
around the centerline, or, initially, Ty ~ 0 in large parts of the domain (see figure
3.1(a)). Consequently, the model in (4.20) is virtually zero in these phases of the
flow development. However, once the mixing layer has evolved also away from the
centerline into the parts of the domain where Al is significant, a comparably high
correlation of about 0.6 is observed.

More detail regarding the quality of (4.18) can be inferred from the PDF P(, ¢ cR).
For the calculation of the PDF a binning procedure [126] has been used in terms
of the quantities £* and &g which are given by ¢ and t¢cr normalized by their
root-mean square values, i.e.,

g* = ) 1/’2}E = d]CE

. — (4.21)
(€%)> (VeE)

D=
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Figure 4.4: The PDF P(£,¢cg) for the flow at ¢ = 60, with non-uniform filter-
widths corresponding to @ = 3/4 and a) 8 =5, b) § =10 and ¢) 8 = 30.

In figure 4.4 we observe that the PDF’s are localized around the origin since either
Uz or A, is small in large parts of the domain; observe the contour-levels used in the
figure. More importantly, we observe that contours of the PDF’s are mainly located
in the first and third quadrant which underlines the quality of the hypothesis
formulated in (4.18). The predominance of contour-lines in the first and third
quadrants indicates that whenever |¢¢g| is large, so is |£*|, and that in addition
the signs correlate very well. These aspects are certainly required in order for the
modeling hypothesis to be accurate.

The PDF’s can be used to obtain one-dimensional conditional averages which fur-
ther quantify the effectiveness of the model &. As an example, it is expected that
‘events’ in which ¢y > 0 will correspond closely with locations where £ > 0 and
vice versa. This relation may be illustrated by considering what we will refer to as
the positivity correlation:

U"(a) = (Ycg>0/{=a). (4.22)

The function ¥+ denotes the expectation that the dissipation is positive given the
value of £. It is expected that ¥*(a) — 1 for a > 0 and ¥t (a) — 0 for a < 0, i.e.,
the commutator error dissipation is positive whenever the modeled term is and
vice versa. In fact, there should be a sharp ‘cross-over’ from ¥+ ~ 0 to U ~ 1 as
a changes sign, to indicate that the Lagrangian modeling hypothesis is accurate.
Closely related is the conditional expectation of ¢cg as a function of a,

E(a) = (Yepl€ =a) . (4.23)

Close correlation of ¥cg and € would imply an approximately linear dependence
of £ as function of a.
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Figure 4.5: The stochastic variables a) U1 (£) and b) £(&) in case a = 3/4, 8 = 10
and t = 40 (dotted), t = 60 (solid) and ¢ = 80 (dashed).

In figure 4.5 we plotted ¥T and & for the characteristic case « = 3/4 and 8 = 10
at various stages in the development of the flow. In figure 4.5(a) the expected
behavior of ¥ is indeed observed, including the sharp transition around &* = 0.
In figure 4.5(b) an almost linear relation between £ and ¢ is observed, which further
establishes the quality of the new parameterization for symmetric filters.

4.3.3 Correlation and PDF of energy dynamics model for skewed
filters

Next, we turn to skewed filtering in the definition of the commutator errors. First,
we establish that the originally proposed parameterization (4.17) is no longer ade-
quate for non-zero skewness and that the dispersive part & needs to be included.
Next, we will study the effect of varying the relative importance of the dissipative
(&) and the dispersive (£1) contributions in the Lagrangian model, for various
values of the filter skewness.

In figure 4.6 we display U for several values of the skewness parameter v and a
characteristic turbulent field obtained at ¢ = 60.0. In this figure the sharp cross-
over around ¢ = 0 is still present, but the size of the ‘jump’ becomes smaller as
skewness increases. The desired behavior in which that U (¢) — 0 for £ < 0 and
T (&) — 1 for £ > 0 is not so clear for v # 0. For example, for v = 1, ¥ (¢) tends
to 0.45 for £ < 0 and to 0.65 for & > 0. The correlation-coefficient was found to
drop to approximately 0.15 in cases of maximal skewness v = i%.
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Figure 4.6: The positivity correlation U¥(£) between og and the dissipative
model & at t = 60.0 in case « = 3/4 and § = 10 for the symmetric case v = 0
(solid) and various values of the skewness: v = 15 (dash-dot), v = § (dotted)
and v =  (dashed).

Figure 4.7: The positivity correlation U+ (£) between ¢c and the full Lagrangian
model € = ¢p&p — ¢1& in case the filter-width is given by @ = 3/4 and 8 = 10.0
at t = 60.0 and skewness v = % with various values of the ratio ¢1/co, ¢1/co =0
(dashed), ¢1/¢o = 5 (dash-dot), ¢1/co = 30 (dotted) and ¢1/cg = oo (dash-
dotdot). For comparison also the symmetric result is given (solid).

The failure of &y to cover all aspects of ¥ suggests the need to include the explicit
dispersive contributions due to & in case the filter is skewed. Hence, we next extend
the testing to the full parameterization (4.18) where £ = coép—c1&p with parameters
co and c;. In figure 4.7 we show W™ for various values of ¢ /cy at skewness v = %
The expected behavior of U is similarly recovered by incorporating £; into the
model, and compares well with that obtained in the symmetric filter case.

The dependence of correlation and ¥ on the ratio ¢;/cy naturally leads to the
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Figure 4.8: The correlation between 1o and £ as a function of the ratio between
c1 and cg. a) ¥ = % at various moments in time, ¢ = 40.0 (dashed), ¢ = 50.0
(dotted), t = 60.0 (solid) and ¢ = 70.0 (dash-dot). b) ¢t = 60.0 and v = 3 (solid),
v = 1 (dashed), v = 75 (dotted), ¥ = 55 (dash-dot), v = 135 (dash-dotdot) and

v = 1555 (long dash).

question what ratio is optimal. In figure 4.8(a) the correlation is shown as a
function of ¢1/cyp at various moments in time for v = % We notice that the
correlation has a peak near ¢;/cy = 13. Moreover, this ‘optimal’ value for ¢;/cg
is quite independent of the skewness parameter v as shown in figure 4.8(b). The
limiting cases corresponding to ¢1/co = 0 or ¢1/cy = o0, i.e., when ¢1 or ¢ is zero,
correspond to the individual correlation of the diffusive- £y and the dispersive-part
&1 respectively. Consequently these limiting cases indicate whether for a given
skewness either dissipation or dispersion is dominant. Clearly, when v =~ 0 and the
behavior of the commutator error is diffusive a high correlation is observed when
c1 = 0, while the correlation is zero when ¢y = 0. If the skewness increases then
dispersion becomes more and more important. Moreover, already for v = % the
individual correlation for the dispersive part & is higher than that for the diffusive
part & and the dynamical behavior of the commutator error is dominated by
dispersion rather than diffusion.

More global information can be gathered from figure 4.9. In this figure contours
of the correlation between ¥cp and § are shown as a function of ¢;/cy as well as
the skewness . The graphs shown in figure 4.8(b) are horizontal intersections of
figure 4.9 for a given skewness . As can been seen in this figure in a small band
around v = 0 dispersive effects are absent as the highest correlation is observed for
c1 = 0. For |y| > % the relative importance of dispersion increases considerably
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Figure 4.9: Contour plot of the correlation between cg and £ as a function
of the ratio between c¢; and ¢y and the skewness v when ¢t = 60, o = 0.75 and
B = 10. The contours-increment is 0.02. The V-symbols indicate the location of
maximum correlation for a given skewness.

with increasing skewness. In this regime where dispersive effects are important the
tendency of the correlation to peak at a constant value of the ratio ¢1/cp is also
observed. This tendency was already observed in figure 4.8(b) and is in figure 4.9
depicted by the V-symbols. For a given skewness these symbols indicate the peak
correlation. For this particular snapshot of the flow and typical filter-width layout
the location of the maximum correlation is observed when ¢;/cy ~ 13. Other
snapshots and other filter-width lay-outs indicate that the optimal ratio should be
somewhere between 10 and 30.

In this section we have shown that the parameterization (4.18) can capture the
dominant dissipative and dispersive aspects of the local transport of resolved ki-
netic energy arising from the commutator error. The results generally show high
correlation between ey and £ for both symmetric and skewed filters. In the next
section we will hence consider the corresponding subgrid model for the commutator
error C;(u;uj;). Moreover, we will compare the resulting model with other explicit
commutator error models (CE-models) arising from general similarity assumptions.

4.4 Explicit modeling of the commutator error

In this section we first formulate explicit models for the commutator errors. Sub-
sequently, results of a priori testing will be discussed, where special attention will
be given to the quality of the proposed models in case skewed filters are applied.
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4.4.1 Similarity and Lagrangian type commutator error models

In this subsection three models M; for the commutator error C;j(u;u;) will be
introduced. The first two models are based on similarity assumptions [47] and
resemble the similarity and gradient model for the SGS-stress 7;; introduced in
section 2.2. The third model is based on the Lagrangian interpretation of the
commutator error.

The similarity CE-model extends the Bardina or similarity model for the SGS-stress
(2.33) [7]. In fact, for any SGS-term similarity type models can be formulated and
involve the evaluation of the SGS-term using resolved variables. Consequently, the
similarity model corresponding to the commutator error for the convective fluxes
in the momentum equation may be defined as:

M = 9;(a;) — 05wy (4.24)

The similarity model for the commutator error contains a number of additional
explicit applications of the filter-operator. These are computationally expensive
and an alternative can be obtained using Taylor expansions. This gives rise to the
gradient CE-model. It shows close resemblance to the gradient SGS-model (2.34)
[23], except that here also the first order contribution is incorporated in order to
accommodate skewed filters. The derivation of the gradient CE-model proceeds
analogous to the derivation of (3.9) and results in:

3
MERENE = NNy (0 0) 0Tty + Mo Ar(9;00) 0711105 } (4.25)
k=1

Here My, is the r-th moment of the filter applied in the k-th direction. The first
and second moments of the filter make this model sensitive to the actual filter that
was adopted. For the a priori testing of these models the (skewed) top-hat filter
will be used, for which we obtained My = v and My = % + ’y,% and v is the
skewness parameter for the xj-direction.

The third model M; that will be introduced is based on the Lagrangian behavior
of commutator errors. In line with the Lagrangian model (4.18) for the transport
of resolved kinetic energy and the physical dimension of the commutator error flux
the following Lagrangian CE-model is proposed for the case A; does not depend
explicitly on ¢:
ﬂ.
MZLag = {dOA—Z - dl"yj 8jm }DtAj ; DtAj = ﬂké)kA] (4.26)
J
Here dy and d; are appropriate (dynamic) constants. This model represents the

Lagrangian interpretation discussed above in section 4.2.1 and includes separate
contributions associated with the skewness of the filter.
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Model time

0 10 20 30 40 50 60 70 80 90 | 100
Sim | 0.99 | 0.94 | 0.93 | 0.95 | 0.95 | 0.95 | 0.94 | 0.92 | 0.93 | 0.93 | 0.94

Grad | 0.61 | 0.53 | 0.63 | 0.76 | 0.78 | 0.74 | 0.75 | 0.75 | 0.74 | 0.80 | 0.80
Lag | 0.49 | 0.54 | 0.59 | 0.56 | 0.48 | 0.45 | 0.40 | 0.37 | 0.38 | 0.43 | 0.46

Table 4.1: Correlation between M; and the actual commutator error C;(uiu;)
determined from the DNS-fields at different moments in time. In this symmetric
case v = 0 and the filter-width is specified by o = 0.75 and 8 = 10.0.

Further analogies between the SGS-fluxes 9;7;; and the commutator errors may be
exploited to extend existing SGS-models to CE-models. For example, generalized
similarity models may involve (approximate) inversion [41, 118], or regularization
principles such as Leray’s formulation [43]. Moreover, the commutator error for-
mally obeys Germano’s identity [39] which may be formulated as follows. If a
test-filter L is introduced next to £ then the following identity may be verified:

[Etf oL, 8]] (u) = [[:tf, 8]] o ,C(u) + Ligo [ﬁ, 8]] (u) (4.27)

This identity represents Leibniz’s rule for the commutator error bracket (2.17)
and may allow the dynamic determination of possible additional parameters in
assumed basic CE-models, similar to dynamic modeling approaches which were
found successful for the SGS-stress [40].

In the remainder of this section we will consider results of a priori testing of the
explicit CE-models introduced above.

4.4.2 A priori testing of CE-models
Symmetric filters

In table 4.1 the correlation between the exact and the various modeled commutator
error representations is given in case symmetric filters are applied. The similarity
CE-model shows a very high correlation of about 0.94, while the gradient models
shows a correlation of 0.77. The Lagrangian CE-model performs rather poorly as
far as correlation is concerned with a correlation around 0.44. The high correla-
tion of the similarity type models is reminiscent of the situation that arises when
modeling the turbulent stress tensor, especially at relatively modest filter-widths.

The Lo-norm (3.18) of the commutator error flux over planes at constant xa pro-
vides a clear profile with which the actual dynamic contribution of these terms
and their proposed models can directly be compared. In figure 4.10 the resulting
Lo-profiles for Cj(uiuj) and M, are shown. The similarity and gradient CE-model
tend to respectively under- or over-predict the Lo-profile, but their shape is gen-
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Figure 4.10: The Lg-norm of Cj(uju;) and M; as a function of the normal
xo-direction for the symmetric case: exact (solid), similarity (dotted), gradient
(dashed), Lagrangian with dy = 0.05 (dash-dot).

erally in good agreement with the exact Lo-profile of C;(uju;). The latter corre-
sponds of course with the high values for the correlation coefficients observed in
table 4.1. For example the location of the maxima above and below the centerline
are predicted well with these models. The Lagrangian model tends to position
these maxima slightly too close to the centerline. By selecting, e.g., dg = 0.05
the magnitude of these extrema may be predicted accurately using the Lagrangian
model. Since the commutator error also satisfies the Germano identity, there is a
natural option to determine the model coefficients using the dynamic procedure.
This can further improve the correspondence between C;(u;u;) and the Lagrangian
model, without the need to introduce ad hoc parameters. Introducing an extra am-
plitude parameter in one of the similarity models will lead to a loss of Galilean
invariance of these models [67] and is less appealing.

Skewed filters

For the skewed filter case the correlation results are collected in table 4.2 in case
the skewness parameter v = 1/2. In this table various ratios d;/dy are considered
for the Lagrangian model. At this skewness an optimal ratio appears dy/dy ~ 20
at which value the highest correlation is obtained. This correlation is considerably
higher than observed for the Lagrangian-model in the symmetric case and is similar
to the correlation of the similarity and gradient CE-model.

In figure 4.11 the Lo-profile is shown for the various models. For the Lagrangian
model the realizations are shown with dy = 0.05 and d; either 0.8 or 1.0, corre-
sponding to dj/dy ~ 20. Consistent with the observed improved correlation in



90 Chapter 4. Lagrangian dynamics of commutator errors

Model Z—; time
0 10 20 30 40 50 60 70 80 90 100
Sim 0.58 | 0.63 | 0.65 | 0.67 | 0.65 | 0.63 | 0.59 | 0.63 | 0.67 | 0.69 | 0.68
Grad 0.78 1 0.79 | 0.74 | 0.73 | 0.72 | 0.69 | 0.57 | 0.53 | 0.50 | 0.49 | 0.45

Lag | 0028|031 0.23 | 0.14 | 0.08 | 0.07 | 0.04 | 0.07 | 0.06 | 0.04 | 0.05
11034043 | 041|034 |0281|0.25|0.21]0.20|0.17 | 0.15 | 0.16
2038|052 |053|051 044|040 035|031 1]0.26 |0.25]|0.24
10 | 0.48 | 0.68 | 0.74 | 0.77 | 0.73 | 0.69 | 0.62 | 0.57 | 0.60 | 0.48 | 0.43
201 0.48 | 068 | 0.73 | 0.77 | 0.74 | 0.70 | 0.64 | 0.58 | 0.51 | 0.49 | 0.44
30 | 0.48 | 0.67 | 0.73 | 0.76 | 0.74 | 0.70 | 0.64 | 0.58 | 0.51 | 0.49 | 0.44
oo | 0.46 | 0.65 | 0.71 | 0.74 | 0.72 | 0.69 | 0.63 | 0.58 | 0.50 | 0.49 | 0.44

Table 4.2: Correlation between M; with the real commutator error C;(uju;)
determined from the DNS-fields at different moments in time. The skewness is
given by v = % and the filter-width by o = 0.75 and § = 10.0.

Figure 4.11: The Lao-norm of C;(uu;) as a function of the normal xo-direction as
predicted by the commutator error models with skewness given by a) v = 1/4 and
b) v = 1/2 and the filter-width by o = 0.75 and § = 10: exact (solid), similarity
(dotted), Clark (dashed), Lagrangian model with dy = 0.05 and d; = 0.8 (dash-
dot) and Lagrangian model with dy = 0.05 and d; = 1.0 (dash-dotdot)

table 4.2 the Lagrangian model corresponds much closer to the actual commutator
error in the skewed case, producing approximately similar agreement as the other
two models. For example, the peaks above and below the centerline are predicted
well by the Lagrangian model in this case.



4.5. Concluding remarks 91

4.5 Concluding remarks

In this chapter the effects of the commutator error has been studied on the dy-
namics of the resolved kinetic energy and in relation to the momentum equation.
It was argued that the commutator error can be associated with the apparent local
creation or destruction of resolved turbulent flow scales. In turn, this leads to a

local increase or decrease in resolved kinetic energy, depending on the variations
in the filter-width A.

In the Lagrangian interpretation, the effect of a non-uniform filter-width on the
resolved kinetic energy can be captured in terms of the material derivative of the
filter-width D;A = A + w;0;A. Correspondingly, the local transport of kinetic
energy by the commutator error, ¥)cg, was modeled by,

uf? Olu|*\ DA,
P _ 28l D8y
Aj (9.%'j Dt

where v denotes the skewness of the filter. Skewness has been explicitly incorpo-
rated since the commutator error exhibits both diffusive and dispersive behavior
in case skewed filters are applied. In terms of (4.28) the —c1y9;|ul?*-part accounts
for this dispersive effect. The other term in (4.28) represents the contributions
associated with strictly symmetric filters.

Yop ~ € = (Co (4.28)

The Lagrangian modeling (4.28) has been tested a priori using DNS-data of a tem-
poral mixing layer. The results indicated the accuracy of the proposed model for
the transport of resolved kinetic energy by the commutator error. The commuta-
tor error dispersion is found to be considerable in case || 2 %. These additional
effects could be successfully captured by the dispersive part in (4.28). The optimal
ratio between the constants c¢; and ¢y is in the range 10 — 30.

The Lagrangian context also suggests an explicit model for the convective flux
commutator Cj(u;uj). We performed an a priori testing of this new model and
compared it to other CE-models based on similarity and gradient formulations
[122]. The results showed that the Lagrangian commutator error model correlates
less well in case symmetric filters are applied. For the skewed case the Lagrangian
CE-model correlates roughly comparably to the other two models. The similarity
and gradient models are well known for their high levels of correlation. This
indicates that the spatial structure of the commutator error is better captured
by one of these two models than by the Lagrangian model. However, the similarity
and gradient models are known to fail to represent important aspects of the subfilter
dynamics. In particular, too many small scales are generated in simulations using
the similarity model while the gradient model may be responsible for inducing
instabilities in the large-eddy simulation. By construction, the new Lagrangian
model does properly capture the underlying dynamics of the commutator error.
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However a-posteriori testing of these models in simulations adopting a non-uniform
grid and filter-width is required to provide decisive answers.



Chapter 5

Computational turbulent stress
tensor for compressible flow

With the application of a spatial filter operator to the Navier-Stokes equations
scales smaller than the filter-width A are removed. This motivates the use of a
grid-spacing h on the order of the filter-width A. However, such a coarse grid also
induces its own filtering effect as small scale flow features which cannot be captured
by the grid are removed from the simulation. In this chapter! the filtering effect
of the coarse grid discretization is incorporated into the analysis. This results into
a modified closure problem to which we will refer to as the computational stress
tensor. Particularly, we will investigate the computational stress tensor as it occurs
in compressible flow. First in section 5.1 the general computational stress tensor
is introduced and illustrated using the inviscid Burgers equations. The computa-
tional stress tensor for compressible flow will be given in section 5.2. It will be
shown that this computational stress tensor can be decomposed into two parts, one
part primarily associated with the fluctuating density p’ and one part primarily
associated with the fluctuating velocity u”. This decomposition is further investi-
gated in section 5.3 and an approach towards modeling the fluctuating density is
introduced. Finally in section 5.4 the results are summarized.

5.1 Computational turbulent stress tensor

The spatial filtering of the nonlinear terms in the Navier-Stokes equations gives rise
to closure problems. Specifically, these SGS-terms represent the dynamic effects of
the filtered-out small scales on the evolution of the retained larger length-scales.

!This chapter is largely based on Van der Bos and Geurts [124].

93
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These dynamic effects should be modeled in terms of the resolved flow only in order
to close the system of filtered equations. Commonly, one considers this closure
problem as defined purely with reference to the spatial filtering. Considerable effort
has been put into construction, testing and tuning of such SGS-models over the
past years, see, e.g., [48, 91]. However, the next step in the formulation of LES of a
turbulent flow involves the introduction of the numerical method and hence also the
introduction of a new length-scale h which characterizes the (local) grid spacing.
This discretization step induces a second element of possible flow filtering which
translates into additional contributions to the dynamics of the resolved scales. In
this chapter we consider these combined filtering effects in detail and focus on the
closure of the ‘computational turbulent stress tensor’ which entails the filtering
effect of both the basic spatial LES-filter as well as that induced by the spatial
discretization. Specifically, we extend existing literature [83, 84, 106] on this topic
to compressible flows. In the sequel we will frequently refer to the basic spatial
LES-filter as the formal filter, while filtering effects due to the spatial discretization
will be referred to as part of the numerical filter [115].

With the application of the formal filter, scales smaller than the filter-width A are
effectively removed from the solution. This motivates the use of a grid-spacing h
on the order A instead of having to resolve the Kolmogorov dissipation length-
scale n < A, as would be required for DNS. In general it is unclear what subgrid
resolutions » = A/h are acceptable from the point of view of numerical reliability
of the simulations. However, in LES-practice feasibility constraints frequently lead
to a subgrid resolution r as low as 1 or 2 [22, 42, 140]. In such cases the smallest
retained flow-features are only marginally resolved and one may anticipate a sig-
nificant effect from the numerical discretization at large A [92, 93]. Hence, even
though the numerical filtering component can be controlled in principle by choosing
r sufficiently large, virtually all LES studies reported in literature contain dynamic
contributions arising from the coarseness of the discretization. For incompressible
flow the numerical contamination was investigated earlier in terms of the induced
numerical filter [83, 84, 106].

The closure effects arising from the numerical filter are in most cases of practical
LES not negligible as the subgrid resolution r is quite low [21, 62, 146]. Therefore,
the numerical filtering should be fully included into the analysis and modeling of
the LES equations. This advocates considering the closure problem at the level of
the actual computational model, i.e., after the spatial discretization has been incor-
porated. Such an approach differs markedly from addressing the closure problem in
terms of the turbulent stresses as arise on the PDE-level of filtered Navier-Stokes
equations. The most important aspects of this ‘computational turbulent stress’
closure problem can be readily appreciated in terms of the one-dimensional invis-
cid Burgers equation. This will be sketched next to provide a background against
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which the extensions toward three-dimensional compressible flow will be developed
in the rest of this chapter.

If we apply a formal filter (-) to the inviscid Burgers equation we may write the
result as,

O + 30,u2 = O+ 30,0 + 30,7 =0, (5.1)

where 7 = u2 — %2 is the ‘turbulent’ or ‘SGS’ stress, ¢ denotes time, z is the spatial
coordinate, u is the velocity and an over-bar indicates the formal filter. The term
sub-grid scale (SGS) is commonly used in LES literature to refer to what are
actually sub-filter-width scales [21]. These stresses describe the dynamical effect
of the small scales on the resolved scales and need to be replaced by a so-called
subgrid model m(@) in order to close the equation. Subsequently, the closed filtered
Burgers equation can be discretized in terms of a discrete derivative operator ;.

Compared to the standard LES framework, the order of the modeling and dis-
cretization steps may also be reverted. Instead of first introducing the turbulent
stress tensor 7 and then discretising the filtered equation, we can also start from
the discrete convective flux d,(@?) that is directly available in the computational
model and group the remainder into the extended closure problem. To further
clarify the corresponding closure problem we express the discrete derivative opera-
tor as 0, f = @CJ?Where ]/”\denotes the numerically induced filter [106]. Restricting
ourselves to this representation, we may write in full detail,

O+ 20,u? = O+ Lo, + %(arﬁ - 5@2)
= O+ 10,7 + 10, (u? — )
= O+ 20,1+ 30,6 =0, (5.2)

in which we introduced ¢ = u2 — @2 to denote the computational turbulent stress
tensor. This tensor constitutes the full closure problem in the modified equation
and includes the contributions due to the spatial discretization [45].

The difference between the computational turbulent stress £ and the SGS-stress 7
is given by,

£ = -+ -1 = 74+ H@u2), (5.3)
and can be expressed in terms of the high-pass filter associated with the numerical
filter H(f) = f — #. This high-pass filter is extensively discussed for a range of
discretizations in [45]. For a given discretization method the difference between &
and 7 depends on the subgrid resolution which characterizes the strength of the
numerical ﬁlter/igg. If the subgrid resolution r is sufficiently large, the numerical
filter operator (-) reduces to the identity operator on all length-scales relevant to
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7. This implies that £ — 7, and consequently (5.2) reduces to (5.1) as was to be
expected.

However, in practical LES settings the grid spacing is chosen such that A < A and
the numerical filter component in the full clc/)s\ure problem needs to be explicitly
accounted for. Often, the numerical filter () is not explicitly known. In this
chapter we will focus attention on the characteristic case in which the numerical
filter is taken the same as the basic LES filter such that £ = (u2 —@2)/2. Such a
situation can arise in different ways. For example, we may start with the top-hat
filter with filter-width A = 2h as basic LES filter. This filter is identical to the
induced filter associated with second order central finite differencing. Conversely,
more general finite difference and finite volume discretizations each induce ‘their’
specific associated spatial filter, which might also be adopted as basic LES filter
[45]. In either of these cases the numerically induced filter would be identical to
the basic LES filter. In this chapter we will restrict primarily to the top-hat filter
and consider typically a filter-width over grid ratio A/h = 2. The effect of this
second order filter compares closely with the effect of other second order filters,
such as the Gaussian filter [48, 142]. In this approximate sense one may interchange
different second order filters if this would facilitate a specific analysis. Extensions
to general numerical filtering only constitute technical complications and will not
be developed explicitly here.

This sequence of steps to arrive at a computational LES model has been applied to
the incompressible Navier-Stokes equations previously by Rogallo and Moin [106]
and Lund and Kaltenbach [84, 83]. The resulting SGS-terms were analyzed, e.g.,
by Carati et al. [21, 146], Gullbrand and Chow [62] and by De Stefano and Vasi-
lyev [115]. In this chapter we will extend this literature and analyze the large-eddy
equations for the compressible Navier-Stokes equations. We will distinguish two
parts in the computational stress tensor ;; for compressible flow. The first contri-
bution corresponds mainly to turbulent stresses arising from variations in velocity
while the other part is influenced more by variations in density. This decomposition
of the computational turbulent stress tensor motivates the introduction of separate
models for each of these dynamic effects. Especially in case compressibility effects
are large, e.g., at high Mach numbers, one may expect significant contributions
from density variations and it can be beneficial to introduce dedicated subgrid
models for each of these contributions. Results of an a priori investigation using
DNS of turbulent mixing at various Mach numbers will be used to quantify the
individual contributions. At sufficiently high (supersonic) Mach numbers the dy-
namical effect of density variations are found to require explicit modeling. A new
set of density variation models based on approximate deconvolution is proposed
along lines set out in [116].

The organization of this chapter is as follows. In section 5.2 both the formal and nu-
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merical filter are introduced in detail and applied to the compressible Navier-Stokes
equations. In section 5.3 the magnitudes of the density and velocity variation parts
are investigated using a DNS-database of turbulent mixing at various Mach num-
bers. The deconvolution modeling of the density-variations at high Mach number
is also presented. Concluding remarks are collected in section 5.4.

5.2 Computational turbulent stress tensor for com-
pressible flow

In this section we will first introduce the computational turbulent stress tensor &;;
for the Navier-Stokes equations which govern compressible flow (subsection 5.2.1).
This discussion follows that of the inviscid Burgers equation considered earlier in
the introduction. The computational turbulent stress tensor §;; is subsequently
rewritten in terms of a velocity and a density variation part (subsection 5.2.2).

5.2.1 Spatial discretization and numerical filter

The application of the formal filter implies that the LES solution is contained in
flow-features with length-scales larger than the filter-width A. This motivates the
use of a grid spacing h on the order of A. As sketched in the introduction, the
ratio A/h in actual simulations is not very large in view of practical computing
restrictions. Correspondingly, the spatial discretization may have a considerable
additional filtering effect [92]. This advocates the evaluation of the filtered equa-
tions on the level of the computational model. Hence, a shift of attention toward
the computational turbulent stress tensor &;; is implied, which will be introduced
in detail next.

The formal filtering of the nonlinear convective terms in the momentum equation
0jpuiu; leads to a contribution 0;(pu;w;) which is commonly rewritten as (2.26),

9 (puiuz) = Ojpuitij + 9;ptij. (5.4)

where 7;; is the SGS-stress (2.31). However, within the computational system that
arises after the spatial discretization one has direct access only to 6;(pu;u;). Here,
we denote the numerical approximation of the partial differential operator d; by
the discrete derivative operator d;. This distinction suggests a decomposition in
which,

9; (puiug) = 6;(puiu;) + [@(puw) — 0 (P )| - (5.5)
The closure problem between square brackets is a combination of the formal closure
problem on the PDE-level and a numerical component. The latter can be specified
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in more detail for a large class of spatial discretization methods. In fact, the dis-
crete derivative operator d;, associated with finite volume, finite difference or finite
element methods, contributes directly to the spatial filtering. A simple example
is the second-order central finite differencing method [106]. This discretization
induces a top-hat filter with a filter-width equal to twice the grid-spacing h. In
detail,

5m(f(x’t)) _ f(x+h,t)2—hf(x—h,t) _ ax(li:hfgs;ﬁds). (5.6)

This e/x\ample motivates the following general definition of the implied numerical
filter (-): 0,f = 9. f (see also [45] for further discussion). Assuming the same
implied numerical filter for each of the coordinate directions [83], we may rewrite
the filtered convective term as,

9;(puij) = 05 (puiuy) + 0;(puiwj — puiuy) = dj(puivy) + dj&ij,  (5.7)
where the computational turbulent stress tensor is given by,
&ij = Putt; — puu;. (5.8)
The decomposition (5.7) contains contributions from the filtered mean flux vector
pu;u; next to the divergence of the computational turbulent stress tensor.

The subgrid resolution » = A/h may be used to roughly classify the ‘strength’
of the induced numerical filtering. In case the smallest retaiggd scales are only
marginally resolved (r ~ 1 —2) the induced numerical filtering (-) may be expected
to be dynamically important and lead to significant differences between 7;; and &;;.
In case the smallest retained scales are properly captured by the spatial discretiza-
tion (r > 4 — 6 [42]) the approximately grid-independent LES solution is obtained.
This corresponds to an induced numerical filter operator (/\) ~ Id where Id denotes
the identity operator. In this case §;; ~ 7;;. Commonly, in present-day LES the
subgrid resolution is not chosen much larger than r ~ 1 — 2 [22, 92, 42, 140] and
consequently one needs to include the numerical filtering component in the full
closure problem (5.7) if the filter-width is sufficiently large. In order to connect
most directly to this current LES practice, we primarily adhere to A/h = 2.

The induced numerical filter is determined by the combination of the discretization
method, the subgrid resolution and the computational grid. In LES a wide variety
of numerical discretization methods and grids is employed. Each such combination
induces its own numerical filter that should be analyze/d\ in individual cases. A
characteristic setting that will be used in the sequel is (-) = (-), i.e., the induced
numerical filter is identified with the formal filter. Consequently, &;; is given by

§ij = Puill; — Pust;. (5.9)
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This setting would correspond, e.g., to A = 2h and second order finite differencing
as sketched in (5.6). Other combinations yield different induced numerical filters
[45] which can be investigated along similar lines as adopted in this chapter. Such
extensions primarily constitute technical complications in the analysis and will not
be elaborated upon here.

We next consider the contributions to the computational turbulent stress tensor
&i; as defined in (5.9) in more detail.

5.2.2 Computational turbulent stress tensor in compressible flow

In this subsection we propose a decomposition of the computational turbulent
stress tensor §;; = pu;u; — pu;u; which accounts quite directly for the separate
effects of velocity and density variations. The effects of compressibility in §;; may
be split off as follows:

§ij = Puilly — Puily = Puly — puil;

= PUU; — PUM; + PUU; — PUU;

= ﬁ{% - ﬁzﬂj} + (Pﬁiﬁj - ﬁﬂiﬂj)

= pNij + p’ﬂzﬂj (5.10)
where we introduced the tensor 7;; = uju; — ﬂTﬂJ to represent contributions from
small scales in the velocity, defined with reference to the Favre filter. The final
expression for the computational stress tensor in (5.10) motivates the introduction
of the following two stresses: E"el = pn;j and §den5 = p'u;u;, such that,

5 _ é-vel_’_gdens. (511)

Expression (5.11) splits &;; into a part that is associated primarily with variations
in the velocity (§Vel) and a part that characterizes variations in density (fdens).

Upon putting u; = u; + /', the velocity variation part f"el may be expressed as,

5"81 = p<ulu” +uu; + ulu ;’) (5.12)

In this expression only small-scale variations in velocity are encountered directly.
Variations in p only influence the Favre averaging itself and their effect on 5"61

only ‘indirect’. The interpretation of f dens a5 the density variation part is straight-
forward as only p’ is encountered dlrectly in §dens Clearly in the incompressible
limit this term is zero and at very low Mach number fdenb may be expected to be
negligibly small. Significant effects of fdens are expected only at sufficiently high
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Mach number. In these circumstances explicit models for p’ should be considered
in relation to the closure of &;;. We return to this in the next section.

The decomposition of &; may be further motivated by comparison with the in-
compressible numerical stress tensor as studied in [83, 115, 21, 146, 62, 61]. The

incompressible numerical stress tensor i may be expressed as

;?C = UU; — UiUj (513)
This tensor only contains contributions from small-scale features in the turbulent
velocity. Upon formally replacing the bar filter by the associated Favre filter we
may directly make the identification with 7;; in (5.10), which further substantiates
the interpretation of 2‘-’]91.

In the next section we will study &;; in more detail, compare the magnitude of ﬁfjens

and fl-vfl at various Mach numbers and introduce an explicit model for the density

variations.

5.3 Computational turbulent stress: density and ve-
locity variations

In this section we compare the magnitude of f%ens and 52’]‘?1 using DNS-data of a
temporal mixing layer at various Mach numbers. We establish a strong increase
of 51?1]?“5 with increasing compressibility effects. This indicates under what flow

conditions both fg’jel and fldjens need to be modeled, and hence also when it is
vel

adequate to only address £

The available DNS database contains turbulent flow data of a temporal mixing
layer at subsonic Mach numbers M = 0.2, M = 0.6 and at a supersonic value
M = 1.2 in a computational box € = [0, (1] x [—3£a, 305] X [0, ¢3]. The box-length
in the vertical direction is £ = 59. This is kept the same for all Mach numbers
considered, while ¢; and /3 are sufficiently large to accommodate at least four
periods of the most unstable mode as predicted by linear stability theory [139].
Specifically, we adopted ¢1 = ¢35 = 59 and 68 for the M = 0.2 and M = 0.6 case,
respectively. In the M = 1.2 case the most unstable mode is three-dimensional
and /1 = 39.9 and ¢35 = 22.1 [143]. Periodic boundary conditions are imposed in
the streamwise (z1) and spanwise (z3) directions and free-slip walls are adopted
in the vertical (z2) direction. The initial condition for the streamwise velocity is
formed by a tanh-profile in the vertical direction on which perturbation modes
based on linear stability theory have been added. This leads to rapid transition to
strongly three-dimensional turbulence that is used here to assess the dependence
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of the computational turbulent stress tensor on the Mach number. In each of the
simulations the turbulent regime is characterized by many small-scale components
which are much smaller than ¢; and ¢3. Correspondingly, the size of the domain in
the homogeneous directions is certainly large enough throughout the simulations
to neglect possible effects arising from the use of periodic boundary conditions.
For further details concerning the DNS-data we refer to [141, 143].

The Reynolds number Re based on the upper-stream velocity and half the ini-
tial vorticity thickness is set to 50 when M = 0.2 and M = 0.6 while Re = 100
when M = 1.2. The higher Reynolds number at M = 1.2 was adopted to speed-
up the transition process to turbulence [143]. The simulations at Re = 50 and
M = 0.2, 0.6 use a resolution of 1923 grid-points, while 320 x 513 x 192 grid-points
were used for the simulation at Re = 100 and M = 1.2. Explicit, four-stage, sec-
ond order, compact storage Runge-Kutta time-stepping is combined with a fourth
order accurate finite volume discretization for the subsonic flows while a hybrid
method composed of the third-order accurate MUSCL shock-capturing scheme in
combination with fourth order central discretization was used in the supersonic
case [138, 48]. The filter-width A = ¢5/16 and the top-hat filter was used to pro-
cess individual snapshots of the numerical solutions contained in the database. We
separately verified that the use of a Gaussian filter instead of the top-hat filter
leads to similar conclusions regarding the computational turbulent stress tensor
and its dependence on M. In fact, both the top-hat and the Gaussian filter are
second order filters and the Fourier-transform G of the kernels of these filters can
be written as G(kA) = 1 — (kA)2/24+ ... if |[kA| < 1, where k is the wavenumber
of a Fourier-mode (further details may be found in [49]). The similarity between
these two filters underlines the fact that virtually identical results were obtained
for all quantities investigated in this chapter, when either of these operators was
adopted. Similar observations were made in [142].

In order to quantify the magnitude of Qijens and 52’]91, the ‘planar’ Lo-measure as a
function of the vertical coordinate is considered. For a general field f this is given

o 1 03l 1/2
B = (g [ P dnds) (5.14)

We investigate turbulent flow at various Mach numbers. Since the turbulent mixing
layer develops at different rates for the different Mach numbers it is more insightful
to compare flow solutions with approximately the same momentum thickness. For
the self-similarly developing temporal mixing layer the momentum thickness §(¢)
is a strictly increasing function of time ¢ [141] given by

o(t) = %/_%52 (P)13 (1 - <ﬁ€ll>13> (1 + <ﬁﬁ1>13)dac2, (5.15)

1r (P13 (P)13
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Figure 5.1: The planar Lo-norm Lgl as a function of the vertical coordinate at
instants in the developed turbulent regime when § & 5, which corresponds to
t="70.0,¢t=290.0 and t = 195.0 for M = 0.2, M = 0.6 and M = 1.2 respectively.
Lines are shown solid (M = 0.2), dashed (M = 0.6) and dotted (M = 1.2): (a)

the density variation part £0¢" only and (b) both the density €™ (lower set of

curves) and the velocity variation part £}¢! (upper set of curves).

where ()13 denotes averaging over the homogeneous z1- and zs-directions. The
momentum thickness is a large-scale flow-property that is quite independent of the
adopted subgrid resolution [42]. The use of §(¢) instead of ¢ is quite instrumental
in comparing the results at very different Mach numbers. If a further systematic
scaling of time could be formulated that would collapse the different curves for the
momentum-thickness onto a single Mach-independent curve, then this could further
support the interpretation of the findings. Presently, there is no such scaling known
in literature. In the turbulent regime, the growth-rate of the momentum-thickness
is a decreasing function of M, but its specific dependence on Mach number is quite
complicated and still a topic of ongoing research [143].

The dependence of Lgl( dens) on g4 at different Mach numbers is shown in figure
5.1(a). We focus on the characteristic 11-component and compare solutions in
the developed turbulent regime at different times ¢, selected such that é ~ 5.
Close to the incompressible limit as M = 0.2, the density variation part of the
computational turbulent stress is quite negligible. With increasing Mach number
the magnitude of LSI( dens) strongly increases. In figure 5.1(b) the magnitude
of Lgl( dens) i compared with Lgl( v¢l). In both subsonic cases M = 0.2 and
M = 0.6 the magnitude of the density variation part is much smaller than the
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Figure 5.2: In (a) L$ is plotted as function of the momentum thickness §: velocity
variation part (upper set of curves) and density variation part (lower set of curves).
In (b) their ratio R;; as a function of the momentum thickness is displayed. The
corresponding Mach numbers are M = 0.2 (solid), M = 0.6 (dashed) and M = 1.2
(dotted).

contributions due to velocity variations. However, in the supersonic case M = 1.2
the density variation part is seen to represent a fraction of £11 of about 20 % as
may be quantified, e.g., by comparing the peak values of Lgl.

To further illustrate the relative importance of the two contributions to &;; we
consider the evolution of the full Ly-norm of 5%6“ and {z‘-’jel. The three-dimensional
Lo-norm is given by,

1/2
LN () = <€1€12€3/Qf2(x,t)dx> . (5.16)

In figure 5.2(a) we collected L (£8¢%%) and L (£}$!) as a function of the momentum
thickness. The time-dependence of Lg is illustrated in figure 5.2 and displays an
initial decrease of the velocity variation part in the transitional stage, followed by
quite large but gradual variations around 0.04 in the turbulent regime. The density
variation part displays a gradual increase as the flow develops from the laminar
initial condition to the turbulent state and settles around an M dependent value
during the self-similar stages of the development. At low Mach numbers the values
of Lg due to density variations are small during the entire development of the
flow. However, in the supersonic case the norm of £{¢% becomes approximately

20% of the norm of £}$!. Overall, the variations in L$(£}$!) with Mach number
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are comparably small; compressibility effects appear most pronounced in & ‘ffns.
Similar trends can be observed in relation to other components of §;;. The relative
importance of §§ij°ns and Q;‘?l may be quantified more precisely in terms of the ratio,

LQ( dens) (t)
L3(EH(t)

The dependence of Ri; as a function of the momentum thickness is shown in
figure 5.2(b). For each of the cases considered, this ratio is seen to vary quite
gradually around a Mach-dependent turbulent value as § 2 3. During these de-
veloped turbulent stages Ri; is approximately 1% as M = 0.2, 6% as M = 0.6
and varies between 20% and 25% as M = 1.2. The ratios corresponding to the
other components Rig, ..., R33 (not shown) reveal similar behavior, albeit that
some components saturate at lower levels of about 10% at M = 1.2.

Ri(t) = (5.17)

Summarizing, the planar and three-dimensional Lo-norms quantify the expected
dependence of ﬁld-ens on the Mach number and establish a corresponding degree of
independence of f;’fl. Additionally, the magnitude of the density variation part in
the computational turbulent stress tensor is small in the subsonic regime but can
be considerable at sufficiently high Mach numbers. In the latter case the relative

magnitude can go up to &~ 20 — 25%.

Next we turn to explicit modeling of the density variation part §de“S.

Explicit modeling of density variations.

In the definition of denS = p'uju; two filtered (u; and @;) and one small-scale
contribution p’ arise. To close this contribution to the large-eddy equations, we
consider how well the density variations may be approximated by p* — p. Here
p* ~ pis an approximation of the unfiltered density such that & dens ~ (p* — P)uit;.
Over the past years several so-called inverse filtering techniques have been proposed
which can be used to approximate unfiltered variables [41]. A successful inverse
filtering technique is the approximate deconvolution method (ADM) [116, 118, 117]
that will be considered in more detail next in relation to approximating p’.

ADM is based on truncation of the geometric series expansion of the formal inverse
of a filter operator. If we denote the filter by the operator £ and its (formal) inverse
by £7! then the unfiltered density is formally given by,

p:.cfl(ﬁ):@d (Id — c) (P) = (Id- L))~ Qn(p),  (5.18)

k=0
where the N-th order approximate inversion operator (J is obtained from the first
N terms in the formal series expansion. This series converges to L~ as N — oo,
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provided |1 — CA}(kz)\ < 1, where G denotes the Fourier transform of the filter-kernel
[116]. Since G(0) = 1, this implies that G(k) has to be strictly positive in wave-
number space. This condition is satisfied, e.g., by a Gaussian or Helmholtz filter
[48], but not by the top-hat or the spectral cut-off filter. Still, for finite N the
operator QQn is well defined and may be interpreted to provide the approximate
inverse modeling of the density.

For a number of values of the truncation parameter N we may obtain explicit
approximations for the reconstructed density p7; and the corresponding small-scale
variability p’y = pj — p. In detail we obtain

po=p ; pp=0 (5.19)
Pi=20-p ; PL=p—p (5.20)
ps=3p—-3p+p i pp=2p-3p+p (5.21)

The N-th order approximation for 5%6“ is then simply given by p/\u;u;. Repeated
application of the filter £ is required in order to arrive at an efficient implemen-
tation of ADM. To get an insight in the accuracy and effectiveness of the ADM
modeling of the small-scales in the density an a priori test at supersonic Mach
number is considered next.

The DNS data corresponding to the supersonic turbulent mixing layer at M = 1.2
were first filtered using a Gaussian filter with filter-width A = ¢5/16. In order to
resemble the situation in actual LES the filtered data were subsequently projected
onto a coarsened grid. Specifically, we applied a coarsening by a factor of 16 in each
coordinate direction, compared to the grid used for the DNS and the adopted coarse
grid contains 20 x 32 x 12 grid cells. This corresponds to a subgrid resolution r = 2.
Other resolutions such as 40 x 64 x 24 were also investigated, either at the same
subgrid-resolution or at a higher value » = 4. The accuracy of the N-th order
ADM-approximations is investigated by the Lo-error normalized by the filtered
density,

Lpl *
ER} _ 2 (P —p) and EY =

L3 (px = p)
N .
Ly (p)

L% (p) 522
In figure 5.3(a) the error ER} is shown as a function of the vertical direction for
the same snapshot used in figure 5.1. The corresponding Lo-norm E]S\Z, as function
of the momentum-thickness is contained in figure 5.3(b). The decrease of ER,I and
E]% with increasing N is clearly illustrated. For N = 1 — 3 the error reduces quite
quickly, while for N > 3 only small additional improvements are observed. In
total, about a factor of two reduction in the error-levels can be obtained with the
ADM procedure, in this case. We also studied the application of ADM at increased
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Figure 5.3: Ly-measures of the relative error in the approximated density pj as
a function of a) vertical direction for the field when 6 ~ 5, and b) momentum
thickness. Use was made of N-th order ADM in combination with a Gaussian
filter: N =0 (dash-dotdot), N =1 (dash-dot), N = 2 (dotted), N = 3 (dashed),
N =4 (A), N =6 (solid), N =8 (0). In ¢) and d) results are compared using
a sub-grid resolution A/h = 2 and a spatial resolution of 20 x 32 x 12 (lines)
and 40 x 64 x 24 (symbols), N = 0 (dashed/O), N = 1 (dotted/V) and N = 8
(solid/o).
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subgrid resolution. At a resolution of 40 x 64 x 24 using A = ¢5/16, i.e., r = 4, the
reduction in the error-level proceeds also at higher N and reaches a factor of about
3.5 at N = 8. The residual non-zero values for the error at high N are associated
with the additional projection of p onto the coarser LES grid. At fixed r» = 2, the
ADM-approximation of the density variations becomes more accurate at higher
spatial resolution. This arises since in this case the filter-width A decreases with
increasing resolution and the approximate inversion of order NV is accurate over a
wider range of length-scales. The improvements can be observed in figure 5.3(c)
and 5.3(d), where we compare the errors ER} and ESL at resolutions 20 x 32 x 12
and 40 x 64 x 24, respectively, with r = 2. Again, we observe that the error is
reduced by about a factor of two in these cases when N is increased, but since the
‘start-level’ of the error at N = 0 is lower at higher resolution, also the results at
higher N become more accurate. These illustrations indicate the possibilities for
an accurate reconstruction of p arising from ADM already at a modest value of
N = 3 for low subgrid resolution A/h = 2.

5.4 Concluding remarks

In this chapter we investigated the computational turbulent stress tensor for com-
pressible flow. The computational turbulent stress tensor is the main SGS-term
in the discretized LES equations. In view of the small filter-width to grid ratio
r = A/h that is typically used in LES, the dynamic consequences of both formal
and induced numerical spatial filtering need to be incorporated in the analysis and,
ultimately, in the SGS modeling.

— R

In case the induced numerical filter (-) is identified with the formal filter (-), the
computational turbulent stress tensor for three-dimensional compressible flow may
be written as

gij = puiuj—ﬁﬂiﬂj. (523)

The main observation presented in this chapter is that two separate parts can be
identified in &;; for compressible flow,

&; = pnij + plusug, (5.24)

where 7;; = u;u; — iifj The first part, pn;;, was shown to be associated primarily
with small-scale variations in velocity. For example, 7;; corresponds to the com-
putational turbulent stress tensor for incompressible flow [84, 83] in case the Mach
number tends to zero. The second term, p'u;u;, is associated with small-scale vari-
ations in the density. This contribution is negligibly small in the incompressible
limit, and becomes dynamically important at sufficiently high Mach number. This



108 Chapter 5. Computational stress tensor for compressible flow

was quantified in an a priori investigation based on DNS-data of turbulent mixing
at various Mach numbers. The density variation part is negligibly small in the
incompressible limit (M = 0.2), but in case of supersonic flow (M = 1.2) these
dynamic effects were considerably larger and achieve levels of up to 20% of those
of the velocity variation part for this particular flow.

The decomposition of &;; suggests the use of separate models for variations in
velocity w] and density p’. For the velocity variations one of the well known SGS-
models such as the Smagorinsky, gradient or Leray model can be used [48]. In
this chapter we modeled the small-scale density variations using the approximate
deconvolution method [116]. Results of an a priori investigation showed that the
ADM-approximations reproduce the unfiltered density already at modest-order
(N =2or N =3). A priori investigations are well known to be limited, e.g., since
important effects such as interaction and accumulation of different modeling and
numerical error-components can not be quantified [90]. A posteriori investigations
are needed to complement the present a prior: analysis.



Chapter 6

Variational Multi-scale
approach to LES for
compressible flow

In this chapter!' an alternative formulation of LES is derived using the Variational
Multi-scale approach to LES (VMS-LES). This alternative approach was recently
introduced in [24, 69] for incompressible adopting Fourier-spectral basis-functions.
In this chapter we will present a VMS-LES formulation for compressible flow using
general basis-functions.

6.1 Introduction

6.1.1 Motivation and Goals

Due to the wide range of dynamically relevant flow scales present in a typical
turbulent flow it is not possible to compute most realistic turbulent flows by means
of a Direct Numerical Simulation (DNS) within the foreseeable future. Multiple
simulation techniques based on a coarsened flow description have been proposed to
overcome this problem of which Large-Eddy Simulation (LES) is one of the most
promising. In an LES the spectrum of flow scales is divided into a resolved and
unresolved part. Only the resolved scales are computed while the dynamic effects
of the unresolved scales on the resolved scales are replaced by Sub-Grid Scale
(SGS) models [48, 91]. By only computing the resolved scales an LES requires
significantly less computational resources than a DNS.

!This chapter is largely based on Van der Bos, Van der Vegt and Geurts [127].

109
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Traditionally LES techniques have been developed using the filtering approach
[48, 91]. A low-pass filter operator with a filter-width A is used to identify which
scales are resolved and which not. It is then believed that a grid can be used with
a grid-spacing h on the order of the filter-width A. In a recent paper by Hughes
et al. [69], and later in a different form by Collis [24], the Variational Multi-Scale
approach to LES (VMS-LES) was introduced. In fact, VMS-LES as discussed in
[24, 69] contributes to two different topics which are of interest to LES. First, by
considering an a priori scale separation of the solution space I in terms of resolved
U and unresolved U’ scales, i.e.

U=UaU, (6.1)

an alternative approach to LES is obtained. Here the solution space U contains
all admissible solutions U = [p, pu;, E] for the Navier-Stokes equations (2.1)-(2.3)
and the scale separation considered in VMS-LES is such that U = U + U’, where
U €U and U’ € /. Among others VMS-LES differs from the traditional filtering
approach in the sense that it explicitly uses projection rather than low-pass integral
filters traditionally employed in LES.

The second contribution of VMS-LES to turbulence simulation, is a promising
approach to SGS-modeling by considering an additional a priori scale separation
of the resolved flow scales into large- and small-resolved scales. An approach which
resembles the application of high-pass filters [108, 134] and dynamic modeling in
the traditional filtering approach to LES [39, 40]. In this chapter we will only
use the separation in terms of resolved and unresolved scales. We will extend this
methodology to compressible flows and adapt the formulation such that it becomes
applicable to a wide range of discretization methods.

The influence of the underlying discretization on the resulting VMS-LES formu-
lation is a less emphasized aspect of VMS-LES as presented in [24, 69]. This is
mainly reflected in the specific choice of the resolved flow scales in [24, 69],

U = Uy, (6.2)

Here U}, denotes the finite dimensional computational solution space which is de-
termined by the method of discretization and the computational mesh. In [24, 69]
Fourier-spectral methods are used for which U} is spanned by a finite number
of Fourier-spectral basis-functions e’*. As is well known, discretizations based
on Fourier-spectral methods are in general impractical to use for complex flow-
domains. In order for VMS-LES to be applicable to complex flow domains other
discretization methods should also be considered and the VMS-LES formulation
should be adjusted accordingly. We will do so in this chapter and frequently use
DG-FEM as an illustrative example [25, 75, 130].
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6.1.2 VMS-LES for compressible flow

The discussion in this chapter leading to a VMS-LES formulation for compressible
flows follows along the same lines as the derivation for incompressible flows given
by Collis in [24]. This contrasts recent work by Koobus and Farhat [77]. They
introduce VMS-LES for compressible flows based on the formulation of Hughes et
al. [69], which does not explicitly account for the dynamic effects of the unresolved
flow scales. But maybe more importantly, the formulation presented in [77] does
not resemble what is known as the Favre-filtered Navier-Stokes equations.

Favre- or density weighted filtering (averaging) has originally been introduced by
Favre [31, 32, 33] and used in LES of compressible flow by Vreman et al. [137, 141],
Lele [79], Moin et al. [95] and Erlebacher et al. [30]. One of the main reasons for
adopting a Favre averaging or filtering procedure is the reduction in the number of
SGS-terms. For example no SGS-term is encountered in the continuity equation
when such a procedure is used. The compressible VMS-LES formulation presented
in this chapter is analogous to the Favre-filtered Navier-Stokes equations.

6.1.3 VMS-LES formulation and discretization

The method of discretization and the grid adopted in a simulation form an integral
part in VMS-LES as reflected by (6.2). The choice of setting the resolved scales
equal to the computational solution space is convenient and is also adopted in this
chapter. For example there is no need of specifying an external filtering operator
to determine which scales are resolved and which not. Instead one can directly use
the projection onto the grid.

There is also a drawback to the fact that VMS-LES is strongly interwoven with
the discretization. When a different method of discretization is used, a different
VMS-LES formulation emerges. In this chapter we will compare the VMS-LES
formulation using a Fourier-spectral discretization with the VMS-LES formulation
when using a more generally applicable numerical method such as DG-FEM.

The VMS-LES formulations in [24, 69] are based on a Fourier-spectral discretiza-
tion. The computational solution space then contains all Fourier-modes e’* with
|k| < k¢, where k. denotes the cut-off wave number. VMS-LES formulations based
on Fourier-spectral methods have the advantage that the associated projection
P : U — U commutes with differentiation, i.e.,

P[@ZU] = 8Z7D[U], YU e U, (63)

and no so-called commutator error is encountered [51, 52, 54]. In the first part of
this chapter leading to the VMS-LES formulation for compressible flows we will
assume commuting projections.
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In the second part of this chapter we will focus on discretization methods other
than Fourier-spectral methods and use DG-FEM as an illustrative example. Such
methods can conveniently be used in complex flow domains. The main difference
between a VMS-LES formulation based on a Fourier-spectral discretization and
methods like DG-FEM can be isolated to the fact that projection generally does
not commute with differentiation. There are U € U/ for which,

PlA;U] £ 0;P[U]. (6.4)

In the final part of this chapter we will consider those properties which are satisfied
by a DG-FEM and adjust the VMS-LES formulation accordingly. A number of ad-
ditional contributions emerge which, as we will show, have a one to one correspon-
dence with the commutator error C; (2.29) encountered in LES [51, 52, 54, 122, 123].

The organization of this chapter is as follows. In section 6.2 we repeat some of the
essential details of the DG-FEM, outline the VMS approach to LES and discuss
the differences between a commuting and non-commuting projection. In section
6.3 the VMS-LES formulation for compressible flow is given assuming a commuting
projection. The VMS-LES formulation using non-commuting projections follows
in section 6.4. Finally, in section 6.5 some concluding remarks are collected.

6.2 Mathematical Model

In this section we first briefly recall some aspects of the DG-FEM introduced in
chapter 2. Then we outline VMS-LES and further elaborate on the relation between
the spatial discretization and the resulting VMS-LES formulation. Finally, we
discuss the commutation properties of the projection operator P : U — U with
respect to differentiation.

6.2.1 Outline of the DG-FEM

DG-FEM is used as a characteristic numerical method for illustrating the general
VMS-LES formulation that is developed in this chapter. A DG-FEM discretiza-
tion has been introduced in section 2 and those aspects essential to the VMS-LES
formulation developed in this chapter are briefly recalled. Specifically, we will di-
vide the spatial domain €2 into elements K C €, define the computational solution
space Uy and introduce the operator B for the weak formulation of the com-
pressible Navier-Stokes equations. These form central elements in the subsequent
VMS-LES formulation.

In DG-FEM the domain ) is divided into non-overlapping elements K with a
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typical diameter h, resulting in a tessellation 7},

T, = {KCR?’KiﬂKj—(Z)ifz‘;éj, Uj\gKi—Q}. (6.5)

Here Nk denotes the number of elements. The computational solution space U}, is
spanned by element-wise continuous basis functions ¢;. These basis functions are
constructed such that they are linearly independent and on each element K € 7,
they span the local finite dimensional solution space P(K). Typical local solution
spaces P(K) that are considered in DG-FEM are polynomial spaces which include
polynomials up to a certain degree, see section 2.3 or [119, 130]. The resulting
computational solution space is then given by,

U, = {U € (Ls(0))°|U] . € [P(K)P,VK € Th} (6.6)

and the total number of basis functions used is denoted by N.

The operator By, used to define the weak formulation for the Navier-Stokes equa-
tions is arrived at by multiplying (2.10) with test-functions W € U, integrate by
parts over each element K € 7; and finally sum over all elements,

By(W. V) = 3 (Wa atva)K . (ajwa F(V) — Fg;j(V))
KeT,

K

+ (Wanj

F&i(V) = F3(V)) (6.7)

oK'
Here ( . | . ) denotes the Lo-innerproduct, (f‘g)Q = [o f(x)g(x) dx, and n is the
unit outward normal vector at the element boundary K. Throughout this chapter
integrals are written in terms of these inner-products as a short-hand notation.

The distinctive aspect of DG-FEM is that it allows the basis functions to be dis-
continuous across element faces, hence for V€ V;,, y € 0K, K € Tj,, generally

V_(y) # V+(y), (6.8)
where Vi(y) = liﬂf}l V(y £ en) denote the traces of U at the element boundary
13

OK. In order to deal with the jumps at the element boundaries 0K and also for
numerical stability it is necessary to introduce numerical fluxes [8, 9, 25, 75, 119].
However, to simplify the presentation in this chapter we restrict ourselves to the
terms in (6.7).

6.2.2 Outline of the VMS approach to LES

The specification of the VMS approach to LES proceeds in a few steps. Central
in VMS-LES is a splitting of the solution space of all admissible solutions of (2.1)-
(2.3) U into a finite dimensional space of resolved flow scales U and a space of
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unresolved flow scales U/,
U =uou'. (6.9)

In this chapter we assume that the space of resolved conserved variables can be
determined by a projection P : U — U and each U € U can be written as U =
U + U’ with U € U/ and U’ € U’. In the next step we rewrite the operator By, as
defined in (6.7) into a so-called “large-eddy template” [48],

B(Wy,, U+U’) = B,(W,,U) + By (W, U, U'), (6.10)

with Wy € U;. In this large-eddy template we distinguish a large-scale part
B, (W, U) and the SGS-terms Bj%5. The SGS-terms are dependent on both
resolved and unresolved variables and describe the dynamical effects of the un-
resolved scales on the resolved scales. In principle one could also determine the
large eddy template immediately from a discrete Navier-Stokes operator such as
BPG (2.74) and identify the SGS-terms as they occur in the discretization. This
would, however, add to the technical complexity of the current chapter and is not
considered here.

In a DNS the computational solution space contains all dynamically relevant flow
scales up to the Kolmogorov length-scale 7 and the dynamical effects of the SGS-
terms are negligibly small. At the typical resolution considered in LES the dy-
namical effects of the SGS-terms can not be neglected. Rather than neglecting the
SGS-terms one needs to incorporate them by introducing SGS-models My, (W, U)
which only depend on the resolved scales in order to close the equations. For a

specific model M}, this results in the following set of LES-equations,

0 = Bh(wh,U)+Mh(Wh,U). (6.11)

In this chapter we will describe the VMS-LES formulation in terms of a large-eddy
template (6.10) for the compressible Navier-Stokes equations and we will not touch
upon possible models as encountered in (6.11).

A distinctive aspect of the VMS approach to LES is that the discretization forms
an integral part of the method. Specifically this is reflected in two aspects. Firstly
by the choice of the resolved scales,

U := U, (6.12)

which lets these resolved scales be determined by the discretization. The second
way the VMS-LES formulation is affected by the discretization comes from the
fact that the equations are immediately evaluated at the level of the “computa-
tional model” [45, 124], i.e., the equations are evaluated after the application of
the discretization step, see the discussion in the previous chapter. This contrary
to most traditional filtering approaches to LES. In these approaches the filtered
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equations are evaluated at the level of the “partial differential equation”, i.e. be-
fore the application of the discretization step. The discretization step should,
however, not be neglected as has already been noticed by a number of authors,
see [21, 83, 106, 115] and results in a modification of the closure problem (see the
discussion in the previous chapter). The VMS approach to LES has the advantage
of immediately including this discretization step and consequently the SGS-terms
in the VMS-LES formulation resemble the modified closure problem. This observa-
tion immediately explains why, in the incompressible case, the Leonard term [113]
is absent in the SGS-stress in VMS-LES [24].

Due to the choice of the space of resolved scales and the specific construction of
the computational solution space U} we can now proceed with the introduction
of the projection P : Y — U as an Lo-projection onto the basis functions ¢y,
k=0,...,Ng—1(2.22). This projection plays an important role in the discussion
in this chapter. Recall that for a field f we can define P as,

Ng—1 Ny—1
P = 3 { D (lo)g My | on). (6.13)
k=0 =0

Here My, = (gbl‘gbk)g is an Ny x Ny, symmetric, positive definite matrix. This
matrix is often referred to as the mass matrix and in case orthogonal basis functions
are used this matrix reduces to a diagonal matrix.

Some properties of this projection that will be used in the sequel are:

1. P is assumed to be mean-preserving, i.e. P(1) = 1.
2. P is a linear operator such that for ¢1,co € R and Uy, Uy € U,
PlciUy + c2Us] = 1 P[Uq] + 2 P[Us). (6.14)

3. P is projective, i.e. U = U. This can be easily checked by considering,
Ux) = Y (Ul¢r)g My or(x), (6.15)
k,1=0
= Y (U100 gM (dml 6 ) M 6x(x), (6.16)
k=0 m,n=0
- Z { Z U‘% ml}Mlk P (x), (6.17)
k=0 mmn=0
Ng—1 Ny—1

= > { > (U}%)Q‘Snl}Mfkl de(x) = U(x).  (6.18)

kil=0  n=0
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4. P is self-adjoint with respect to the Lo-innerproduct ( . ! . )Q, ie.

(Oiw), = (vW), o

which is a consequence of P being projective [147].

6.2.3 Commuting and non-commuting projections

In earlier papers on VMS-LES, Fourier-spectral discretizations were used [24, 69].
In this chapter we also consider discretization methods, such as DG-FEM, that
can be more conveniently used in complex flow domains. As was motivated in the
previous subsection the method of discretization determines the projection of P
and hence ultimately the VMS-LES formulation.

The main difference between a VMS-LES formulation based on, e.g., DG-FEM
compared to a formulation based on a Fourier-spectral discretization can be ex-
pressed in terms of the projection P. Whereas the projection operator commutes
with differentiation when a Fourier-spectral method is used it does not necessarily
commute with differentiation when other discretization methods are considered,
ie.,

P, U] # 8;P[U]. (6.20)

In the traditional filtering approach a similar problem exists. Recalling from earlier
chapters, so-called commutator errors emerge in the filtered equations when [51,
54],

L[0;U] # 0,L[U]. (6.21)

We will show that in VMS-LES similar SGS-terms emerge when the projection P
does not commute with differentiation.

Important for our further discussion is that a commuting projection implies that
both the spaces of resolved and unresolved scales are “closed with respect to dif-
ferentiation”. We consider the space of resolved scales to be closed with respect to
differentiation if?,

U ¢ (U3 YUcl. (6.22)
Similarly, the space of unresolved scales is closed with respect to differentiation if,
U € (U, VU el (6.23)

In fact one can verify that the projection operator P commutes with differentiation
if and only if both spaces U and U’ are closed with respect to differentiation.

2By the Einstein notation, 8; = [01, D2, O3], hence 8;U =VU
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The proof that both ¢/ and U’ must be closed with respect to differentiation when
P commutes follows directly from,

0,0 = 9;P[U] = P(&:;U) €U, (6.24)
U = 8{(ld—P)[U]} = (Id—P)o;U] el (6.25)

Here Id denotes the identity operator. In order to show that P commutes with
differentiation when both ¢/ and U’ are closed we need to show that when either
U or U is not closed then P does not commute. In case U is not closed then
0jUq = Aqj + Baj where Ayj € (U)3 and B,; € (U')3. Consequently, P[0;U,] =
An; whereas 0;P[U,] = 0;U, = Aqj + Baj. Similarly when U’ is not closed
we have 0;U,, = Cy; + Dyj where Cyj € (U)? and D,; € (U')3. This results in a
non-commuting projection because P[0;U}] = Coj whereas 9;P[U,] = 0.

An important consequence of the statement made above, is that in case a discretiza-
tion is used which results in a non-commuting projection, then (6.22) and/or (6.23)
do not hold. Based on this observation the remainder of this chapter can be di-
vided into two parts. In section 6.3 we specify the VMS-LES formulation where
we conveniently assume a commuting projection. Subsequently, in section 6.4 we
consider projections P which do not commute with differentiation. Specifically, we
will assume that the space of resolved scales is closed with respect to differentiation
while the space of unresolved scales is not. These assumptions apply among others
to projections which emerge when DG-FEM is used.

6.3 VMS-LES formulation for compressible flow using
Fourier-spectral methods

As outlined in the previous section, in the VMS-LES a splitting of the space of
conserved variables I/ in terms of resolved and unresolved scales is considered. A
subtle problem which seriously complicates the formulation for compressible flow
is that the VMS-LES formulation cannot be expressed in terms of the conserved
variables p, pu; and E = pe [77]. Instead, in this chapter we express the formulation
in terms of the density p, together with the velocity u; and total energy e = E/p
which is defined as [4],

1 p
e = = + sugug. (6.26)
(v=1p 2
These variables are decomposed into a resolved and unresolved part. The distinc-
tive difference between the VMS-LES formulation presented in this chapter and
the one presented in [77] lies in the construction of resolved part of the velocity
and total energy.
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In subsection 6.3.1 the large-eddy template for the compressible Navier-Stokes
equations is sketched and the construction of the resolved velocity and total energy
is explained. The resulting SGS-terms are shown in subsection 6.3.2 and briefly
discussed in subsection 6.3.3.

6.3.1 Large eddy template for the compressible Navier Stokes
equations

For their VMS-LES formulation of incompressible flow, Hughes et al. [69] and Col-
lis [24] exploited a series expansion of the Navier-Stokes operator By, with respect

to the conserved variables U. If there is a finite number of non-zero variations
By, (W, U, U’) we may write,

By(W,U) = By(W,U+U) = B,(W,U)+ > By(W,U,U), (627)

where By, i, is the k-th variation of B, which is given by,

k
Bnx(W,0,U") = lim

lim (H@ Bi(W,TU + sU’)). (6.28)

Comparison of (6.27) with the large-eddy template (6.10) reveals that the variations
By (W,U,U"), k=1,...,N contain all the SGS-terms of VMS-LES.

For the incompressible Navier-Stokes equations Bp = 0 for & > 2 [24, 69]. If
exactly the same procedure would be followed for the compressible Navier-Stokes
operator using conservative variables (6.7) an infinite number of non-zero variations
of By, will be found. The fact that an infinite number of variations is found is best
illustrated by the convective flux in the momentum equation 0;jpu;u;. In terms of
the conserved variables the convective flux is given by 0;U;U; /Uy and its variations
are given by,

. 1 dF (Uz'—i-EUZ-/)(Uj—i-EUJ/»)

SOR AR (U + eUp)

(6.29)

In general these variations will be nonzero for all £ > 1 due to the division by the
density (Uyp = p). As a result, the above described methodology can no longer be
used.

A possible way to arrive at a finite number of non-zero variations is to first consider
the Navier-Stokes operator By, in terms of p, the velocity u; and total energy e and
expand the Navier-Stokes operator with respect to these variables, which shows to
have only four variations.
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The Navier-Stokes operator expressed in terms of the vector V = [p, u;, €] is defined
through,
BL(W,V) = Br(W,U(V)) = Bp(W,U). (6.30)

Next write V as V + V”_ where V = [P, Ui, €] is the resolved and V" = [p/, u!, €”]
the unresolved part. Further we define p = P[p] and require that u; and € satisfy,

pu; = pli, pe = pe, (6.31)

where pu; = Plpu;] and pe = P[pe] are the resolved conserved momentum and
energy density, respectively. Definition (6.31) is of particular importance as we
will observe that additional SGS-terms emerge when u; and € do not satisfy (6.31).

One can readily verify that when u; and € are defined according to (2.27) wu; and
€ satisfy (6.31). However, than u; and € cannot be expressed in terms of a finite
number of basis-functions, i.e.,

Ny— Ny—1

1
wGx) = Y badi(x),  ex) = Y budi(x). (6.32)
=0 =0

In the subsequent part we will determine IA)il and 541 such that u; and € can be
expressed in terms of basis-functions and satisfy (6.31) as well. In fact, a general-
ization of Favre-averaging to general projections is arrived at.

First we will show that Favre averaging is a special case of (6.31). Momentarily
restricting the discussion to the velocity field, if we replace the projection operator
~ with the averaging operator over an element K, < : > o 10 (6.31), we get,

(O ki) e = (PUi) - (6.33)

Averaging can be considered as a special case of (6.31) because we are allowed to
place the <p> j-term, which is a scalar variable, outside the averaging brackets:
<<,0> Kﬂz‘> = <p> K<ﬂl> - Then dividing by the averaged density allows us to
define the resolved velocity field as,

(W), = (i) (6.34)

<p>K 7

which corresponds to the well known definition of Favre averaging [31, 32, 33].

For general projections it is not possible to place the projected density p(x) outside
the projection operator, i.e.

Pl # . (6.35)
and as a result

Pl # D Ui. (6.36)



120 Chapter 6. VMS-LES for compressible flow

Equality in these expressions would allow us to define the resolved velocity field
u; by pu;/p. That (6.35) and (6.36) cannot be an equality for general projection
operators is clearly illustrated using polynomial basis functions. Consider the one-
dimensional case on a reference element K = [—1, 1] using first order polynomials.
Then the resolved density is given by p = po + p1z, the resolved momentum by
pu; = ao + ai1x and the resolved velocity by © = bo + blx where b(] and b1 are
unknowns. Inserting this into the right hand side of (6.35) or (6.36) gives,

(po + /31.73)(60 + 61%) = ﬁoi)o + (/30[;1 + ,51(;0)1’ + ﬁ161$2, (6.37)

which is a second order polynomial. However the left hand sides of (6.35) and
(6.36) result in the first order polynomials 50 + ﬂlx and ag + ax, respectively,
where the coefficients 60 and ﬁl are given by,

A 17,5

o = 5 (oo (ubs + pabo)e + pibia?|1)
“ 3/. 3 .7 -7 5. b

B = 2 oo+ G + o)+ pibia)

Because of this mismatch in polynomial order one cannot define 130,2)1 € R for
which equality holds in (6.35) and (6.36) for all x € K.

Returning to the three-dimensional case and assuming p-th order polynomial basis
functions, the terms on the left-hand-sides of (6.35) and (6.36) have polynomial
order p, while the term on the right-hand-sides results in polynomials of order p x p.
Equality can only be achieved when both sides are of equal polynomial order which
is the case when p = 0 or p = oo. The former case corresponds to elements-wise
averaging which has just been described above as a special case. For the latter case
we would have to consider a computational solution space U}, of infinite dimension
which is not allowed in the VMS approach to LES. Therefore it is not possible
to determine l;il, l =0,...,Ny — 1 directly from pu;/p when p > 0. Next, we
will show, however, that it is possible to uniquely determine the coefficients 62‘17
1=0,...,N4s—1 using (6.31). By directly determining the coefficient bir using this
definition we do not encounter the mismatch in polynomial order as encountered
n (6.36).

First we introduce the following short hand notation for the resolved momentum

contribution in terms of the basis functions ¢y,

Ny—1

P = > aidr, (6.38)

k=0

where the expansion coefficients a;;. are given by d;, = Zl]iﬁ)il (pui‘@)QMfkl,
k=0,...,Ng—1. The expansion coefficients for the resolved velocity contribution,
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~

bi, 1 =0...Ng — 1, are determined by inserting the expansions of pu; and u; into
(6.31),

Ny—1 Ny—1
p bugr = Y dirdr, (6.39)
1=0 k=0
which is equivalent to,
Ng—1 Ny—1
ST bapd = Y aindk. (6.40)
1=0 k=0

If we replace pg; € U with it’s expansion in terms of the basis functions ¢, we get,

No=1  No=1 (Ny=1 _ Ny—1
Z by Z { Z MlmMm}g}Cbk = Z ik Pr- (6.41)

1=0 k=0 \ m=0 k=0

where Mlm = (ﬁgbl ‘gbm)Q is the weighted mass matrix with the resolved density as
weight. This matrix is positive definite as long as the resolved density is strictly
positive.

Next, we introduce the matrix F = MM~ which can be used to simplify (6.41),

Ng—1  Ny—1 Ny—1
b > Fudr = Y itk (6.42)
1=0 k=0 k=0

Because M is positive definite, its inverse exists and the coefficients b;; can be
determined by,
Ng—1

bu = Y agFy', 1=0,...,Ny—1, (6.43)
k=0

where F~! = MM~!. Comparison with (6.34) reveals that the division by the
averaged density is replaced by multiplication with the inverse of the matrix F.

If we now expand the Navier-Stokes operator B, (W, V) as Bj,(W, V +V"), where
V = [p,u, €] and V" = [p/,u,€"], a finite series expansion is found. Only four
non-zero variations,

k

Byx(W,V, V") = lim

lim (H@ Bi(W,V + 5V”)), (6.44)

exist. For example consider the term pujupur which shows up in the energy
equation (combine equations (2.3) and (2.4)). The variations for this term are
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given by,

. 1 dk — /N ([~ /AN nm(~ 14
il_{% Tl dek (P +ep')(u; + euz)(w + ewy) (W + ewy)
1 d*

i

—~ ~ ~ J~ o~ ~ o~ o~ g = I~ ~
= {pujulul + e(pujwuy + 2pujuguy + pujug)
+e%(2 p'ujupu) + plu Ty 4 g vy + 2 pul i)

3 )~ ", n /oM~ I — 11 4 1 1 1.1
+ e (puju) vy + 2p" iy + pujugug) + & pluiuy v }, (6.45)

and are zero for k > 4.

The resulting large eddy template is given by,

4
0 = By(W,U) = B,(W,U)+ > Bup(W,V, V"), (6.46)
k=1

where we have used that the resolved velocity field %; and € can be expressed in
terms of the resolved conserved variables such that,

BL(W,V) = B,(W,V(U)) = B,(W,T). (6.47)

In (6.46) we can identify a large-scale part B,(W,U) and a SGS-part which is
formed by the four variations By, (W, V, V"), k=1,2,3,4.

In the following subsection we will identify all SGS-terms assuming a commuting
projection. The case of non-commuting projections is given in section 6.4.

6.3.2 SGS-terms in compressible VMS

The VMS-LES formulation for the compressible Navier-Stokes equations contains a
large number of SGS-terms. In order to facilitate the presentation, the compressible
Navier-Stokes operator Bj, is split into several parts, related to the continuity,
momentum and energy equation and are denoted by Bf°™, B°™ and B, %,
respectively. The parts corresponding to the continuity and momentum equation
are respectively given by

Bﬁont(W, U) = Z (Wo’@tp)K + (Wolajpu])[(, (6.48)
KeT,
and
B]Ilnom(W, U) = Z <Wz atpui>K
KeTy,
—(Wi dilpuiuj + (v — 1)(pe — 5 purur)dij + Uij])K. (6.49)
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Their VMS-LES formulations will be given in this subsection. The VMS-LES
formulation for the energy equation is given in appendix A.

Since the projection operator is self-adjoint we may write the continuity equation
as,

BP(W,u) = % (Wo‘@)K+(W0’m)K. (6.50)
KeT,

Next we use that the projection operator commutes with differentiation 0;p = 9;p
and 9;pu; = 9;pu;. Hence

BP(wW,u) = % (Wo‘atp)KJr(Wo]ajp—%)K. (6.51)
KeT,

For the continuity equation, the right-hand-side of (6.51) is fully expressed in terms
of resolved conserved variables p and pu; and we arrive at the following large-eddy
template for this equation:

B°"(W,U) = B (W,U), (6.52)

which does not contain any SGS-terms.

Applying the same steps as for the continuity equation above to the momentum

o)

jlpa + (v = 1) (e — Spman)dy; +04]) - (653)

equation gives,

Bpem(W,U) = Y (WZ»

KeT,

(W

The momentum equation is non-linear with respect to the vector of conserved
variables and needs to be expanded in terms of variations in order to identify its
SGS-terms. The momentum equation has three non-zero variations By, i, such that,

Br™(W,U) = Bpro™(W,U) + ZBmom (W, V,V"). (6.54)

The SGS-terms appearing in this equation, Bﬁzm(W,V,V”), k =1,2,3, are re-
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spectively given by,
Bmom (W, {}-’ V”)

- Z(wz

KeT,

— I

)

+ (Wz |9; [p'az‘ﬂj + puguy + pugu;

oy = )G + P — Sl — pa)oy — 5] ) . (655)

1.,
) K

+(W¢‘8j [p’u,u + plu g + puiu

+( = V) — P = Spuiu)di] ) (6.56)

Bmom (W, {7’ Vl/)

_ Z(W@

KeT,

and
Bmom(w’ ‘Nf’ V//)
= > (Wilos[oufu] - $0v =)o gézj})K (6.57)

KeTy,

The term &;; in (6.55) denotes the first variation of the viscous flux and is given
by,

. 1
oy = E(ﬁju;’ + Opulj — 26,;0kuy).- (6.58)
Furthermore, one can ver1fy that the terms p/u/ and p’é” in (6.56) are canceled

out by pu? + p'u; and pe” + p'e in (6.55), respectlvely, if w; and e satisfy (6.31).
This is because,

ﬁTg + p'u; = pui — ;) + plug, (6.59)

and by (6.31) we can replace the pu; contribution with pu; such that,

1

pul + o = pui — P+ pU; = —plui+pu = — pluf. (6.60)

Similarly one can show that pe” + p/é = —p/e”. This shows why it is essential for
u; and € to satisfy (6.31). If this would not be the case the terms p’u! and p’e” in

(6.56) would not cancel out by ﬁTQ’ + p/u; and pe” 4 p'e in (6.55), respectively.
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Inserting these variation By, j into (6.54) gives, after some manipulations,

BRo™(W,U) = Bp™(W,U)
+ Z (8 Wi ‘puzu + pullu; — (v — 1)pﬂku%5ij>
KeT,, K

+(Wing|puid] + pulli; — (v — 1)pﬂku§é5ij)aK
0. W, ‘pu” o %(’7 —1)puf Z&;)

(
-(o
(. W 7 - )
- (o7
(7

u] %(7 - 1 P ukukéz])

_l’_

_l’_

(vy=1)p ukuk@]

D=

Win; )p witj —

< iWi| = &3 X + nj| — &y ok (6.61)
n (6.61) a number of SGS-terms is encountered which can be divided into several
groups,

" l/

1. the cross terms pu;uj + pujt; and the Reynolds terms pu;ju} originating from

the convective flux pu;u; and the pressure flux (y — 1)3 2,0ukuk i,
2. the density fluctuations in p'u;u;,

3. the first variation of the viscous flux &,

The cross terms and Reynolds stress are similar to the cross terms and Reynolds
stress encountered in incompressible flow [24, 69]. The other SGS-terms are typical
for compressible flows.

6.3.3 Comparison with the SGS-stress for compressible flow

Studies regarding LES of compressible flow using the traditional filtering approach
have shown that the main SGS-term, even up to quite high Mach numbers, is the
divergence of the SGS-stress tensor d;p7;; [137, 141]. The SGS-stress tensor for
compressible flow is given by,

PTij = puiuj—ﬁﬂiﬂj. (6.62)

The SGS-term requires modeling and a wide array of models exists for this stress
[141]. Although models have been proposed for other SGS-terms appearing in the
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Favre-filtered Navier-Stokes equations, in most cases the dynamical effects of these
SGS-terms can be neglected [137].

Next, we will establish which of the SGS-terms in (6.61) correspond to the diver-
gence of the SGS-stress 0jp7;;. For this we multiply the divergence of the SGS-
stress given by (6.62) with test-functions W € U and integrate over the domain
Q. This results in the following expression,

(WZ 8jﬁTij>Q = Z (Wz
K

€7y,

s it — O ) (6.63)

For a self-adjoint, commuting projection, this is equivalent to,

(Wi @ﬁm)g = Z (Wz
KeT;

€7y

iju@-uj — Ojﬁﬂﬂ])K (664)
After integration by parts we find,

<W¢ 8jﬁnj)Q = Z —<8jWi

KeT,

P — Pt
PUU; — PUU; X

+(W1n]‘puzu3 — ﬁﬁlﬂj)aK. (665)

Since p = p — p' and u; = u; + u (6.65) becomes,

(Wiloms), = > ~(o:

KeTy,

7

~ " . 1,1 17777 .
puUty + PU; U + puzuy + p uluj)](

(6.66)

+ <Wm] ‘pﬂlug’ + pu;’ﬂj + pug’u;.’ + plﬂiﬂj>

oK’
Observe that these SGS-terms correspond to the non-linear terms in the large-eddy
template of the momentum equation (6.61) which originate from the convective
flux, i.e., the cross terms, the Reynolds stress and a contribution with a fluctuating
density.

6.4 Extension to non-commuting projection operators

In the previous section a VMS-LES formulation was given for the compressible
Navier-Stokes equations when a commuting projection operator is assumed. For
the application of VMS-LES to complex flow geometries it will generally not be
possible to make such an assumption. Numerical methods other than Fourier-
spectral methods have to be used resulting in a non-commuting projection. In this
section non-commuting projections are considered and only the space of resolved
conserved variables U is assumed to be closed with respect to differentiation. With
respect to differentiation in time we will assume a commuting projection and hence

8,P(U) = P(8,U) VU € U.
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6.4.1 SGS-terms in VMS-LES when using non-commuting projec-
tion operators

In order to arrive at the VMS-LES formulation a slightly different approach has
to be taken than in the previous section. We start with the continuity equation as
formulated in (6.48) and apply partial integration,

B W, U) = Kze;h (Wo‘ﬁtp>K - (@Wo‘puj)[( + (Wonj‘puj)aK. (6.67)

Now use can be made of the assumption that the space of resolved scales is closed
with respect to differentiation. This implies that on the interior of an element
0jWo = 0;W. Inserting this into (6.67) gives,

B (W, U) = K;h (Wo‘ﬁtp) o (W‘w) ot (Wonj‘pw) o (0-68)

Then using that a projection operator is self-adjoint and the assumption that P
commutes with differentiation in time allows us to rewrite (6.68) as,

w0 - 5 (o), - (o),
Wonj[pa + (pus) ) 6.69
+( 07 Pu3+(PUJ)>8K (6.69)
where we decomposed pu; as puj + (pu;)’. This results into,

Bzont (W7 U) _ Bzont (W’ U) + Z (W()nj ‘ (Puj)/> oK (670)
KeTy,

Contrary to the case of commuting projections we encounter now a SGS-term: the
trace of the unresolved scales at the element boundary.

Next, we apply similar steps to the momentum equation. We start with integration
by parts of (6.49), which results in,

By*™(W,U)
= Z (Wl 8tpui) - (8JWZ PU;U; + (’Y — 1)(/)6 — %pukuk)(sij + Uz'j>
K K
KeTy,
—l—(ij‘puiuj + (v = 1)(pe — 3puguy)di; + Uij>8K' (6.71)

Then using that the space of resolved conserved variables is closed with respect

to differentiation, hence 9;W; = 9;W;, the fact that the projection operator P is
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self-adjoint and commutes with differentiation in time gives,
Bmom (W’ U)
- (W

), - o
KeT, K
+(W¢nj‘pUiug- + (v — 1)(pe — 5puru)dij + Eij)BK

—i—(ij‘(puiuj)/ + (v = 1)((pe)" — %(pukuk)/)éij + Ugj)aK’ (6.72)

pugu; + (v — 1)(pe — §Pukuk)5w + UZJ>K

In the next step we take variations and after a rather lengthy calculation we arrive
at,

— mOm(W U
<a W, ‘puzu + pulu; — (v — 1)pﬂkug5ij>
KETh K

+<W j}puzu + pullu; — (v — l)pﬁkugéij>aK
(a Wil o] — A(y — 1) u;;(s”)K

+<W J}p“” =3y - 1)Puk“%5w)aK
<5) il puuy — %(’y — 1)p’ﬁkﬂk5ij)l(

+<W | — (v — 1)P’?7kﬁk5z‘j)aK
(8 U”)K + (ij} B Jij)aK
<W nj|(puiug) + (v — 1)((pe) — 5 (purur)')dij + U§j>aK- (6.73)

Compared to (6.61) additional SGS-terms emerge which all have been gathered on
the last line in (6.73). Similar to the continuity equation all these additional SGS-
terms are traces of the unresolved parts of the convective flux F}; and the viscous
flux Fl’; at the element boundary. Next, we will show that these terms correspond

to the commutator error C; encountered in the traditional filtering approach to
LES.

6.4.2 Comparison with the commutator error in LES

The use of a non-commuting projection immediately calls for a comparison with
the commutator error encountered in LES. For a field f, the commutator error
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SGS-term in LES is given by [51, 52, 54, 122],
Ci(f)=0;f - 9;f (6.74)

For convolution filters such as the top-hat and Gaussian filters [48] the commutator
error is typically encountered when the filter-width is non-uniform, but a non-
uniform filter-width is not the only source of commutator errors. For example a
filter which is not of convolution type or of which the filter-kernel is not a symmetric
function, also contribute to commutator errors [47, 51]. Moreover, the projection
used in this chapter cannot be rewritten in terms of a convolution, see (2.19) [134].

Formally every term in the matrices Fyy; and Fg; as defined in (2.11) induces a com-
mutator error. In this chapter we only discuss the commutator error encountered
in the continuity equation C;(pu;) as an illustrative example. This commutator
error is analyzed in a similar way as done for the SGS-stress previously.

After multiplication with test-functions W € U and integrating over the domain
2 the commutator error C;j(pu;) is given by,

(Wolcitoun), = > (Wolcitou) (6.75)
KeT,

= Z <W0 Ojpu; — ajij)K’ (6.76)
KeT,

= ) (Wo 3JPUJ)K - (Wo‘c?jij)K. (6.77)
KeT,

In the next step the variables pu; are decomposed as pu; = pu; + (puj)'. Then
(6.77) reduces to,

(Wolcitoun)) = > (Wo|os(ouy)') (6.78)

K
KeT,
_ K;h_(ajm]<puj>’)K+(Wonj\@uj)’)w. (6.79)

Next we use the assumption that the space of resolved scales is closed with respect
to differentiation, hence 8jW0 = 8jW0, which yields,

(Wolestou), = > ~(aWo|(ew)) -+ (Wom|(pws)), .+ (6:80)

KeTy,

= Y —<8jW0‘(ij),>K + (Wonj’(Puj)/>aK7 (6.81)
KeTy

= Z (Wonj‘(puj-)/> oK (6.82)

KeTy,
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This expression for the commutator error C;(pu;) corresponds to the SGS-terms
in the continuity equation (6.70). Consequently the SGS-term appearing in (6.70)
can be identified as a commutator error.

6.5 Conclusions

In this chapter the Variational Multi-Scale approach to LES (VMS-LES) is consid-
ered as an alternative approach to LES. VMS-LES has been recently introduced in
[24, 69] and considers a scale separation of the space of conserved variables U into
a finite dimensional space of resolved scales I/ and the space of unresolved scales
U'. Contrary to the traditional filtering approach to LES a projection rather than
a low pass filter is used to determine which scales are resolved and which not.

In this chapter we have extended VMS-LES to compressible flow and adapted the
formulation such that it can be used for a wide range of discretization methods.
The VMS-LES formulation for compressible flow has been constructed such that
it resembles the Favre filtered Navier-Stokes equations. In the traditional filtering
approach these equations are used in the simulation of compressible flow.

VMS-LES is strongly interwoven with the underlying discretization because typi-
cally the computational solution space Uy is used to define the space of resolved
scales, i.e. U = Uy,. This aspect of the VMS approach to LES has been extensively
discussed in this chapter. In [24, 69] only Fourier spectral discretizations were
used which result in a commuting projection P : i — U. As is well known Fourier
spectral methods are generally impractical to be used in complex geometries. In
this chapter we have considered the use of other discretization methods and used
DG-FEM as an illustrative example. Such methods result in a projection which
no longer commutes with differentiation. In the resulting VMS-LES formulation
additional terms emerge which correspond to the commutator error encountered
in traditional LES.



Chapter 7

Effect of numerical viscosity in
LES of turbulent flow

In this chapter we present results of LES for homogeneous turbulent flow using DG-
FEM. In particular, we investigate the effect of numerical viscosity introduced by
the discretization to the LES SGS-modeling, using a data-base approach recently
introduced in [92, 93].

7.1 Introduction

One of the distinctive aspects of a DG-FEM is that solutions are allowed to be
double valued across an element interface as illustrated in figure 2.1 and, as dis-
cussed in section 2.3, numerical fluxes are used to deal with these discontinuities.
Traditionally, upwind type fluxes or (approximate) Riemann solvers are used [121],
that are excellent in capturing shocks, but have a considerable viscous contribu-
tion [80]. Numerical viscosity is required for the stabilization of any numerical
scheme, e.g., to prevent the occurrence of spurious oscillations around sharp dis-
continuities in a flow [20, 80]. However, at coarse grid resolution the numerical
viscosity can have a considerable contribution to the total dissipation rate of re-
solved kinetic energy (numerical dissipation). This may present problems when
using DG-FEM in an LES. SGS-models, like Smagorinsky’s model (2.32) consid-
ered here, are introduced for similar reasons. They are introduced to dissipate
kinetic energy (SGS-dissipation) thus stabilizing an under-resolved simulation of
turbulent flow in an attempt to model the action of the unresolved scales on the
resolved scales [20, 112]. Hence, in actual LES at coarse grid resolution dissipative
effects of both numerics and SGS-modeling influence the accuracy with which the

131
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smoothed flow is predicted.

In an LES one primarily tries to capture large-scale flow-quantities such as the
resolved kinetic energy. For decaying homogeneous turbulent flow Smagorinsky’s
SGS-model is well capable of capturing the evolution in time of resolved kinetic en-
ergy, however, this model requires a well chosen value of the Smagorinsky constant
¢s in order to do so. Analytical estimates exist which show that the Smagorin-
sky constant should be around 0.17 for isotropic turbulence in order to accurately
capture the dissipation rate of resolved kinetic energy [81, 102, 109]. Addition-
ally, a number of numerical studies exist in which suggestions are made for the
Smagorinsky-constant. These studies typically suggest 0.1 < ¢, < 0.2 [92, 102].
However, none of these studies take into account the effect of the numerical viscos-
ity introduced by the numerical discretization. In case numerical methods are used
with a larger viscous contribution it is unclear whether possibly different values of
¢s should be used to achieve optimal accuracy.

In this chapter the effect of the numerical viscosity on resolution dependent “op-
timal” SGS-constants ¢} for the Smagorinsky SGS-model (2.32) is studied. These
optimal Smagorinsky constants c; are determined using a data-base approach re-
cently introduced in [92, 93] and correspond to the Smagorinsky constant ¢, for
which an a-posteriori error for the resolved kinetic energy is minimal. We will deter-
mine optimal Smagorinsky constants for second and third order accurate DG-FEM
as presented in section 2.3. Use is made of a modified flux formulation in which a
numerical viscosity parameter 7. is introduced that gives explicit control over the
numerical viscosity. We are particularly interested in the dependence of ¢} on the
numerical viscosity parameter 7.

The numerical viscosity parameter resembles the upwinding parameter -, often
found in simulations of the one-dimensional wave-equation, dyu + d,u = 0 [3, 68].
Then the following flux formulation is used,

fu) = {ud + yulul, (7.1)

where [-] and {-} are the (one-dimensional) jump and averaging operators (2.45),
respectively. In case v, = 0 (7.1) corresponds to a dispersive, central flux, while
~vu = 1 corresponds to a dissipative, upwind flux [80].

In figure 7.1 the effect of this upwinding parameter -, is illustrated by considering
a step-function, initially located at = = 0.5, over an interval in time ¢ € [0,0.1]. In
particular, in figure 7.1 the discontinuity at ¢ = 0.1 is shown (figure 7.1(a)) as well
as the location of the discontinuity as a function of time (figure 7.1(b)) and the
kinetic energy £(t) in the domain [0, 1] as a function of time (figure 7.1(c)),

1
Et) = /O (o, 1)? da. (7.2)
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Figure 7.1: a) Evolution of a discontinuity initially located at 2 = 0.5 (dotted)
by the wave-equation d;u + 9, u = 0 over a time interval [0,0.1]: exact wave at
t = 0.1 (solid) and the numerical predictions using first order DG-FEM and (7.1)
as numerical flux: v, = 1 (o), 7, = 0.5 (A) and ~, = 0.01 (). b) location
(u(z) = 0.5) of the discontinuity c) Evolution of the kinetic energy £(t) (7.2). For
these simulations 16 elements are used with only an element mean (p = 0), the
time step is 0.001.

Because the step function is moving into the interval [0, 1] the kinetic £(t) is a
strictly increasing function for the analytics solution; £(t) = % +t.

As can be seen in figures 7.1(a) and 7.1(b) the flux (7.1) with v, = 1 is best in cap-
turing the discontinuity. However, its large viscous contribution can be observed
in figure 7.1(c). The opposite is observed when v, ~ 0. Then the simulation
accurately captures the evolution of the kinetic energy, but is less effective in cap-
turing the discontinuity. Also, spurious oscillations are observed which eventually
will lead to a break down of the simulation. For three-dimensional turbulent flow
analogous effects are expected when the numerical viscosity parameter . is used
as a generalization of the upwinding parameter v,. Adopting 7. =~ 0 will lead
to a reduction of the numerical dissipation, but may lead to numerical instabil-
ity, while adopting v, = 1 results in a stable simulation, although, a considerable
contribution to the dissipation rate of kinetic energy is to be expected.

We will study how ~, affects the optimal choice of Smagorinsky constants. To
determine optimal Smagorinsky constants c} a large number of LES of decay-
ing homogeneous turbulent flow has been performed at various Reynolds numbers
adopting a wide range of grid-resolutions. The results of these simulations are
a-posteriori compared against filtered DNS-data and are gathered in an error-
landscape or “accuracy chart” [92, 93]. By also varying parameters affecting the
SGS-dissipation ¢; and the numerical dissipation -, it is possible to determine the
“optimal” Smagorinsky constant for a given resolution and numerical viscosity pa-
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rameter v.. Next to the already observed dependence of this optimal SGS-constant
on the resolution [92] it will be shown that the optimal SGS-constant ¢} is depen-
dent on the amount of numerical viscosity introduced by the discretization. For
a fixed resolution a lower value of ¢} is found if more numerical viscosity is in-
troduced. For second order DG-FEM the effect of the numerical viscosity is so
large if 7. = 1 that the analysis suggests to abandon SGS-modeling and “let the
numerical dissipation do the work” [59]. However, it will be shown that the best
possible prediction for the decay of resolved kinetic energy at fixed resolution is
arrived at by adopting . ~ 0 in which case the decay of resolved kinetic energy is
governed by the dissipation through the SGS-model instead of dissipation through
the numerical viscosity.

The outline of this chapter is the following. In section 7.2 we identify the main
sources of dissipation and relate to existing literature. In section 7.3 details are
given of the Runge-Kutta DG-FEM (RKDG-FEM) code used in this chapter. Then
in section 7.4 LES results are a-posteriori compared against filtered DNS-data
and the effect of the numerical viscosity is qualitatively shown. In section 7.5
the database approach used to determine optimal Smagorinsky constants is intro-
duced and the dependence of the optimal constants ¢} on the numerical viscosity
parameter . is quantified. Finally in section 7.6 the results are summarized and
discussed.

7.2 Evolution of the resolved kinetic energy in LES

Following [92] we will focus on the evolution of the resolved kinetic energy F
in an unforced simulation of homogeneous turbulent flow in a periodic domain
Q) = [0,1]3. In principle the analysis presented in this chapter can also be applied
to other quantities such as the skewness or Taylor length-scale, but this is not
considered here. For compressible flow the resolved kinetic energy is given by,

o / B Tigip dx. (7.3)
Q

In an unforced simulation of homogeneous turbulent flow the decay of resolved
kinetic energy ¢ = —dE /dt is mainly affected by: i) the resolved molecular dis-
sipation ¢, ) the SGS-dissipation eggs and i) the numerical dissipation enum.
Hence the dissipation rate of resolved kinetic is given by,

€ = €4 +esas + €num- (7.4)

The resolved molecular dissipation €, and the dissipation through the Smagorinsky
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SGS-model egqg are respectively given by,
5# = / u(f)gwﬁﬂl dX, (7.5)
Q

£€sas = /Q,ueSl-j@jﬂi dx = Aﬁ(csh)2|S|Sl]8]ﬂz dx. (76)
Here p(T) is the dynamic viscosity and g is the eddy-viscosity (2.32) in which
it is chosen to set the filter-width equal to the typical element size h. From (7.5)
and (7.6) one can observe that both the resolved molecular dissipation and the
SGS-dissipation are dependent on the resolved rate-of-strain tensor §U At a fixed
Reynolds number and resolution, independent control of the SGS-dissipation over
the molecular dissipation is possible through the Smagorinsky constant c;.

The dissipative component of numerical fluxes can be identified by rewriting the
flux function (see section 2.3) as,

ﬁéj (ULv UR) = {Fo‘ij (U)}} + ’Ycﬁaj- (7'7)

In this formulation of the numerical flux we, analogous to (7.1), distinguish be-
tween a central flux {Fg,;} and the term *ycﬁaj which constitutes the dissipative
component of the modified numerical flux. In the dissipative component the nu-
merical viscosity parameter . is introduced in order to have explicit control over
the numerical viscosity. As a convention we adopt that v, = 0 results in a central
flux ﬁéj = {Fg,;}, while choosing 7. = 1 results in the recovery of the original
flux definition. The central flux is known to be unstable in DG-FEM [130] such
that choosing 7. ~ 0 may lead to numerical instability. In case the original flux
definition is used the simulation is sufficiently stable but may produce a large
contribution to the dissipation rate of kinetic energy.

The viscous contribution of a numerical flux ﬁgj to the dissipation rate of kinetic
energy typically scales with the size of the jump [U,]; at an element interface.
This is most easily observed for Lax-Friedrich’s flux. The modified version of this
flux is given by,

Fg,(UR, UR) = {F.;(U)} + 1A U], (7.8)

where A is the maximal eigenvalue of the Euler-flux Jacobian. The dissipative
contribution of this flux is given by 7.A[Ua];/2. Hence, the larger the jump at an
interface, the larger the regularizing behavior of the numerical flux. Only in case
[Ual; =~ 0 the numerical dissipation is negligible. This, however, is only achieved
at high resolution.

The three sources of dissipation are affected the flow conditions and by three
different parameters: the resolution N > 0, the Smagorinsky constant c¢g > 0 and
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Figure 7.2: Axes for the three dimensional accuracy charts. The plane where
cs = 0 is referred to as the ILES plane while the plane with . = 0 is referred to
as the ELES plane.

the numerical dissipation parameter .. Of these three parameters the Smagorinsky
constant and the numerical dissipation parameter can be used to independently
control the SGS-dissipation and numerical dissipation, respectively. Throughout
this study the effect of other numerical parameters is neglected and left out of the
discussion. In figure 7.2 we graphically displayed the parameter space spanned by
these parameters. Two planes in this parameter space have a special interpretation
and are shortly discussed next.

First of all at the plane where v, ~ 0 the numerical dissipation through the con-
vective flux is small. We will refer to this plane as the Explicit-LES (ELES) plane.
Here, next to the molecular dissipation, only the dissipation through the explicit
SGS-model is of importance. Meyers et al. [92] studied optimal Smagorinsky con-
stants in this plane using a fourth other central finite volume scheme. It was shown
that the optimal Smagorinsky constant is dependent on the resolution. At higher
resolution a lower value of the optimal Smagorinsky constant is suggested by [92].

The other plane in figure 7.2 which has a special interpretation is the plane for
which ¢ = 0. Here the numerical dissipation acts as an implicit model [2, 59] and
no explicit SGS-model is used. Therefore this plane is referred to as the Implicit
LES (ILES) plane [2]. In the present study %ﬁaj constitutes the implicit model.
The best known example of an LES approach exploiting the implicit model is the
Monotonically Integrated LES (MILES) technique as proposed by Boris et al. [12,
57, 58]. In recent years, many other numerical dissipation or stabilization operators
based on numerical arguments have been dubbed a SGS-model. Examples can be
found in articles by Margolin and Rider [85, 86], Hoffman and Johnson [66], Adams,
Hickel and Fransz [2] and in Braack and Burman [14].

In the remainder of this chapter we will explore the full parameter space spanned
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by N, cs and 7.. Next to the dependence of ¢} on the resolution we will study the
effect of 7. on the optimal Smagorinsky constant. First, however, details are given
of the Runge-Kutta DG-FEM (RKDG-FEM) code used.

7.3 Code description and validation

For the results presented in this chapter a RKDG-FEM code based on the dis-
cretization described in section 2.3 is used. In this section additional details will
be given concerning the grid and the actual implementation of the discretization
as well as results of a code validation.

The code can handle different polynomial orders p > 1 and together with suffi-
ciently high order numerical evaluation of the integrals and explicit Runge-Kutta
time stepping this results in a p+ 1-th order RKDG-FEM discretization. In detail,
all integrals are evaluated using p 4 1-th order Gaussian integration and for time
integration use is made of a p+ 1-th order, explicit Runge-Kutta scheme, satisfying
the Strong Stability Preserving (SSP) criterion, see [34, 35, 56, 110, 114] for de-
tails. Dynamic time stepping is used and the time step restrictions are based on a
stability analysis using the advection-diffusion equation. Further, the stabilization
term for the viscous flux, 1, + ny in (2.74), is set to 6 [5, 15] and for the con-
vective treatment the modified HLLC-flux (2.62) including the numerical viscosity
parameter is used.

We consider homogeneous turbulent flow in a periodic domain € = [0, 1]% over a
time-interval [0,1]. A uniform grid is adopted for which the domain € is divided
into N3 hexahedronal elements K with a length A = 1/N. The resulting tessellation
Ty, is given by,

T, = {Kjk — ((i = Dhyih) % ((j— Dh, jh) x ((k—D)h, kh)|1 < i, 4,k < N}. (7.9)

The polynomial basis-functions of maximal order p are constructed as described in
section 2.3. Because a uniform grid is used, the mapping G¥ : K — K reduces to
an affine transformation and the basis-functions ¢ (x), K € T, i =0... N, — 1
remain mutually orthogonal.

In order to validate the code, a number of simulations using various resolutions IV,
Rey = 50, M = 0.2 and Pr = 1.0 are performed. Here Re) denotes the Taylor-
Reynolds number [102]. For these simulation the HLLC-flux is used with v, =1
and the results are compared against the results of a Fourier-Spectral simulation
using 3842 modes [78]. The initial conditions are determined by projecting the
incompressible and isothermal velocity field at ¢ = 0 to the basis-functions ¢iK ,
K eT,,i=0,...,N,—1[78,92]. In this chapter use is made of the following
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Figure 7.3: Code validation at Re) = 50 using second order accurate RKDG-
FEM with 16% (dash-dot), 323 (dashed), 643 (solid) and 1283 (dotted) elements
a) Kinetic energy, b) skewness S3, ¢) Taylor length-scale A. The circles indicate
the results of the reference DNS.
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Figure 7.4: Code validation at Rey = 50 using third order accurate DG-FEM
with 163 (dash-dot), 323 (dashed) and 643 (solid) elements a) Kinetic energy,
b) skewness S3, ¢) Taylor length-scale A\. The circles indicate the results of the
reference DNS.

face-based projection,

Poxlflx) = > > MOK) [ f(y)of(y)dys)(x). (7.10)

KeT,, i,j=0 oK

Here the mass-matrix M;;(0K) is given by M,;(0K) = |, DK oK (y gbK (y)dy. This
projection differs from the projection P defined in (2.22). For the face-based
projection Pyg the integrals are evaluated only over the faces of an element. The
face-based projection results in a considerably more regularized flow-field compared
to the element-based projection.
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A number of reasons exist why the face-based projection (7.10) instead of the
element-based projection (2.22) is used within the present analysis. However, the
main reason for adopting the face-based projection is that the analysis using the
element-based projection suggested the use of Smagorinsky constants that would
render the simulation to become unstable. We will come back to this issue at the
end of section 7.5. The main conclusions, however, do not change when adopting
either the face-based or the element-based projection. In both cases it is shown
that ¢} is affected in by the amount of numerical dissipation introduced by the
discretization and lower values of ¢, are suggest with increasing numerical viscosity.

Results of the code validation are shown in figures 7.3 and 7.4 for second and third
order accurate RKDG-FEM, respectively. In these figures the decay of kinetic
energy is shown,

E(t) = %/ puiu; dx, (7.11)
Q

as well as the evolution in time of the skewness S35 and Taylor length-scale A,

_ (@w)?) _ )
Sz = m, A= m. (7.12)

Here < . >Q denotes averaging over the domain €.

For third order DG-FEM the kinetic energy E is captured at low resolution (323
elements) while at least 643 elements are needed to capture the skewness S3 and
Taylor length scale A. When using second order DG-FEM as shown in figure 7.3
considerably more elements are needed to capture the kinetic energy, skewness
and Taylor length scale. The kinetic energy requires 128 elements, while for the
skewness and Taylor length-scale more than 1283 are required.

Next we will turn to LES results using DG-FEM. These results are a-posteriori
compared with filtered DNS-data.

7.4 Effect of numerical viscosity on the decay of re-
solved kinetic energy

In this section we will present results of LES using different values of ~. and c;
and these results are a-posteriori compared against DNS-data. This allows us to
illustrate the effect of numerical viscosity in a LES on the evolution of the resolved
kinetic energy (7.3). Moreover, it allows us to qualitatively show that depending
on 7, different Smagorinsky constants should be used in order to capture the decay
of resolved kinetic energy.
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Figure 7.5: The decay of resolved kinetic energy at Re) = 50 using second and
third order accurate DG-FEM, 83 or 162 elements and ~. = 1.00 (solid), 7. = 0.10
(dashed) and ., = 0.01 (dotted). No SGS-model is used for these simulations.
The symbols indicate the filtered-DNS solutions.

In figures 7.5 and 7.6 the decay of the resolved kinetic energy E is shown at
Rey) = 50 and Rey) = 100, respectively, using a coarse grid (N = 8 and N = 16)
and both second and third order accurate DG-FEM. In each of the figures the
results are shown of three simulations using v, = 1.00, 7. = 0.10 and v, = 0.01,
respectively. From the reference DNS [78] twenty DNS fields are available with
a time spacing of 0.05. These fields are projected using (7.10)~ in the same way
as used for the initial condition and the resulting values of E are indicated in
figures 7.5 and 7.6. We emphasize that in these figures no use was made of an
explicit SGS-model (¢; = 0.0) such that solely the effect the implicit model ’ycﬁaj
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Figure 7.6: The decay of resolved kinetic energy at Rey = 100 using second and
third order accurate DG-FEM, 8% or 162 elements and ~. = 1.00 (solid), 7. = 0.10
(dashed) and . = 0.01 (dotted). No SGS-model is used for these simulations.
The symbols indicate the filtered-DNS solutions.

is observed.

A number of observations can be made. First of all, it can be observed that in
case 7. is chosen very small (7. = 0.01) this may lead to numerical instability.
In fact all simulations shown in figure 7.6 (Re) = 100) using . = 0.01 resulted
in a numerically unstable simulation. In these cases the flow is not well enough
smoothed through any dissipation and eventually the simulation breaks down. On
the other hand in most of the cases in which the HLLC flux is used with 7. = 1.0
the decay of resolved kinetic energy is already under-predicted and there seems no
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Figure 7.7: The decay of resolved kinetic energy at Rey = 100 using second order
accurate DG-FEM with an explicit SGS-model and 83 elements: filtered DNS
(circles), ¢s = 0.00 (solid), ¢ = 0.04 (dashed), ¢, = 0.08 (dotted) and ¢, = 0.12
(dash-dot). a) 7. = 1.00, b) 7. = 0.10 and c) 7. = 0.01.

need to use an SGS-model.

In figures 7.7 and 7.8 results are shown of E (t) for various values of ¢s and . using
second and third order accurate DG-FEM, respectively. The Reynolds number
in these figures is Re)y = 100. Now with the additional dissipation through the
SGS-model the simulations at minimal numerical dissipation as shown in figures
7.7(c) and 7.8(c) no longer break down. The decay of resolved kinetic energy highly
depends on the choice of the Smagorinsky constant cj.

For second order accurate DG-FEM (figure 7.7) we observe that in case v, = 1.0
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Figure 7.8: The decay of resolved kinetic energy at Rey = 100 using third order
accurate DG-FEM with an explicit SGS-model and 83 elements: filtered DNS
(circles), ¢s = 0.00 (solid), ¢s = 0.04 (dashed), ¢s = 0.08 (dotted) and ¢s = 0.12
(dash-dot). a) 7. = 1.00, b) 7. = 0.10 and c) 7. = 0.01.

the numerical dissipation is so large that c¢; = 0 yields the best approximation.
On the other hand, in case v, ~ 0, ¢s ~ 0.10 should be chosen while slightly lower
values of ¢ should be used in the intermediate case 7. = 0.10. For third order
accurate DG-FEM (figure 7.8) similar observation are made. Lower values of c;
should be adopted with increasing 7., however, the differences between the various
optimal choices of ¢4 are small.

Summarizing, these results indicate that SGS-parameters should be modified at
different levels of numerical dissipation in order to capture the resolved kinetic
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energy as accurately as possible. However, deciding which Smagorinsky-constant
is “optimal” based on these graphs is difficult. Moreover, it does not allow for
general, widely applicable suggestions for the Smagorinsky constant as many more
combinations of N, v, and ¢4 are possible than the ones shown in this section.
Therefore, in the next section a database approach is used to determine the optimal
Smagorinsky constant for a wide range of resolutions N and numerical viscosity
parameters ..

7.5 Accuracy charts approach

The discussion at the beginning of this chapter resulted in the identification of
three different parameters affecting the dissipation rate of kinetic energy. These
are, the resolution N, the numerical viscosity parameter 7. controlling the numer-
ical dissipation and the Smagorinsky constant cs. In this section, using a database
approach, the effect of these parameters on the decay of resolved kinetic energy is
investigated and we determine the optimal Smagorinsky constant for given resolu-
tion N and numerical viscosity parameter ~.. In the absence of numerical viscosity
earlier investigations have already shown that the choice which ¢, is optimal is de-
pendent on the resolution N [92], while the results in the previous section suggest
that the “optimal” choice for the Smagorinsky constant is also dependent on the
amount of dissipation introduced by the discretization.

For the database approach a large number of simulations was performed. Essential
to the approach adopted in this section is that all data available from the simu-
lations is significantly reduced by considering a single a-posteriori error measure
per simulation, i.e., the quality of one simulation is expressed by a single value.
The particular error measure adopted in this study is based on the Lo-error of the
resolved kinetic energy E over a time-interval [0, 1] and is defined as,

tv , ~ 2 1
Erps(t) — Epns(t)) dt ¢
SialE] = {/to ( b DNSt) t} . (7.13)

t1

{7 Bty e}
0

Here a tilde denotes that we are evaluating LES-data and compare it with the
filtered DNS-data.

After having determined dp5[E] for each simulation the results can be put into
a single plot. Such a three-dimensional “error landscape” or “accuracy chart” is
shown in figure 7.9. In figure 7.9 the contours indicate dp2[E], the black dots denote
the individual LES that were performed and the red octahedrons correspond to

the Smagorinsky constant where the error is minimal for a given resolution N and
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Figure 7.9: Three dimensional error landscape of d19[E]. The slices shown corre-
spond to the planes where ¢, = 0.0, 7. = 1.0, 7. = 0.01 and N = 12. Further the
black dots correspond to individual LES-simulation and the red symbols indicate
the optimal Smagorinsky constant ¢} for a given combination of N and ~.. The
realization shown is for third order accurate DG-FEM at Re) = 100.

numerical viscosity parameter .. In order to accurately determine the optimal
Smagorinsky constants for a given combination of N and . the errors in between
the simulations are interpolated using a fourth order polynomial interpolation.

Some individual (N, ¢g)-slices at fixed 7. > 0 and Rey = 100 are shown in figures
7.10 and 7.11. In figure 7.10 we use second order DG-FEM, while in figure 7.11
third order accurate DG-FEM has been used. The dashed lines indicate the opti-
mality curves which are determined using a second order accurate interpolation of
the individual optimal Smagorinsky constants c}. These curves clearly show the
dependence of optimal Smagorinsky constants on both the numerical viscosity as
well as the resolution.

The dependence on the resolution implies that less SGS-dissipation is required at
high resolution in order to capture E(t). In all figures a critical resolution can be
identified above which ¢} = 0. Regarding the dependence on the numerical viscosity
parameter -, it can be observed that lower values of the Smagorinsky constant are



146 Chapter 7. Effect of numerical viscosity in LES

Q

0.15

0’010~

00099700001 9T — 1%

020},
0.15
©"0.10

0.05

000 ¢y i vy o T

(c) 7. = 0.01

Figure 7.10: Two dimensional error landscape of dr,9 [E] for second order accurate
DG-FEM using a) 7, = 1.0, b) 7. = 0.10 and ¢) v, = 0.01 at Rey = 100. The
black points correspond to individual LES-simulation, the diamonds indicate the
optimal Smagorinsky constant ¢} for a given resolution N and the black line is a
polynomial fit of the optimal Smagorinsky constants. The contour increment is
0.01.

required in case more numerical dissipation is introduced by the discretization.
Moreover, in case of second order DG-FEM adopting the HLLC-flux with ~, = 1.0
the optimal Smagorinsky constant ¢; = 0.0 and the analysis suggests to abandon
explicit SGS-modeling altogether.
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Figure 7.11: Two dimensional error landscape of 5L2[E] for third order accurate
DG-FEM. Further details are the same as in figure 7.10.

For the cases with 7, = 0.01 in figures 7.10(c) and 7.11(c) “instability” regions can
be identified and are illustrative for the alternative role of the Smagorinsky model,
that of a stabilization operator. The instability regions are the regions in the lower
left corners of these figures below the solid line and correspond to simulations that
did not properly complete the simulation until £ = 1. It can be observed that
in the absence of numerical dissipation above a critical ¢s the simulations do not
become unstable.
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Figure 7.12: Two dimensional error landscape of dt,9 [E] for third order accurate
DG-FEM when instead of the face-based projection (7.10) the element-based
projection (2.22) is used. Further details are the same as in figure 7.10.

In figure 7.12 the resulting accuracy charts are shown for third order DG-FEM
when instead of the face-based projection the element based projection is used.
Specifically, the element-based projection is used to determine the initial condition
as well as the filtered DNS-data which again is used to determine Epysg in (7.13). In
figure 7.12 similar behavior is observed as in figures 7.11 and 7.10, lower values of ¢,
are suggested with increasing .. However, in figure 7.12(c) (7. = 0.01) we observe
that the optimality curve tends to enter the instability regions for N > 16, i.e.



7.5. Accuracy charts approach 149

0.20 0.20
0.15}-.. 0.15
o0k o ¢
W 0.10F PELEL

0.05 0.05

0'007\\I\\\\I\\\\I\\\\I\\\\I\\\\I\ 0.007“ PRI RIS SYSNTTE SRS S

Figure 7.13: Error d1,9 [E] along the optimal curve using a) second order accurate
DG-FEM and b) third order accurate DG-FEM and «y, = 1.00 (dotted), 7. = 0.10
(dashed) and v, = 0.01 (solid).

the analysis suggests the use of an unstable Smagorinsky constant for resolutions
N > 16. This seems odd for common practice and has been the main reason of
adopting the face-based projection throughout the present analysis.

A natural question that now arises is which of the two dissipations, numerical or
SGS-dissipation is preferable in an attempt to minimize dp2[E]. Is it preferable to
use numerical-dissipation through the HLLC-flux or SGS-dissipation through the
Smagorinsky SGS-model, or possibly a combination of the two? In figure 7.13 the
error dr2[E] along the optimality curve ¢(N) is shown for second order and third
order accurate DG-FEM. The results in this figure show which minimal value of
012[E] can be attained, using Smagorinsky’s SGS-model, for a given resolution N
and numerical viscosity ..

In figure 7.13 we first of all observe that with increasing resolution the error de-
creases. This is an expected result but one should also consider the additional
computational cost associated with an increase in resolution. Doubling N results
in a simulation which is approximately 2¢ times more expensive. Regarding the
choice between the two types of dissipation we observe that the error is lowest
when 7, — 0. The differences with the other values of ~. are more pronounced for
second order DG-FEM. Hence, for this particular flow one should preferably use
the central flux or the modified HLLC-flux with a small viscous contribution and
use the SGS-model to stabilize the flow. This allows for a best possible prediction
of E(t).
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7.6 Summary

In this chapter the effect of numerical viscosity on optimal Smagorinsky constants
has been investigated. It was shown that smaller Smagorinsky constants need to
be used if more numerical viscosity is introduced by the discretization. Numerical
viscosity is typically introduced for stability reasons and to deal with flow discon-
tinuities. A large contribution of the numerical viscosity to the dissipation rate of
the resolved kinetic energy will require the use of different SGS-parameters when
one tries to optimally capture the resolved kinetic energy given a particular grid
resolution.

Optimal Smagorinsky constants have been determined using a database approach
[92, 93] for which a large database of LES-data has been created. The results from
these simulations are a-posteriori compared with DNS-data and optimal Smagorin-
sky constants ¢} are identified. Optimal Smagorinsky constants ¢} correspond to
the value of ¢z for which the a-posteriori error measure o [E’] is minimal for a
given resolution N and numerical viscosity parameter .. The dependence of the
optimal Smagorinsky coefficients on both the resolution as well as the numerical
viscosity was shown. The dependence of optimal Smagorinsky coefficients on the
resolution suggests the use of smaller Smagorinsky constants at higher resolutions.
The dependence of optimal Smagorinsky coefficients on the numerical viscosity
also suggests the use of smaller values of ¢; when more numerical dissipation is
introduced by the discretization. Moreover in case of second order accurate DG-
FEM the numerical dissipation can be so dominant that the analysis suggests to
abandon SGS-modeling at all for the particular flow under consideration in our
analysis. Finally, we were able to show that given a fixed resolution the most op-
timal approximation of E(t) was observed when 7. ~ 0 and a SGS-model is used
to dissipate kinetic energy instead of the numerical viscosity.



Chapter 8

Conclusions and Outlook of
LES for complex vortex
dominated flows

In section 1.3 the main motivation of this thesis was stated: the application of LES
to complex flow. Throughout this thesis we specifically focused our efforts on two
specific topics associated with the application of LES to complex flows:

i) The use of LES in combination with a non-uniform grid and/or filter-width.

ii) The use of LES in combination with a discretization based on DG-FEM.

The main findings are summarized in the first part of this chapter. The second
part of this chapter consists a feasibility study into applying LES to a turbulent
flow over a delta-wing at Re. = 100,000 using DG-FEM.

8.1 Conclusions

Commutator errors

Preferably, in a numerical simulation of complex, turbulent flow a non-uniform
grid is adopted. Such a grid allows one to resolve with greater accuracy those
parts of the domain in which the flow is really turbulent. In an LES of such a flow
one should at the same time adopt a filter-width which is non-uniform; A(x,t).
This, for example, to maintain an approximately constant filter-width over grid

151
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ratio A/h. It is well known that with the introduction of a non-uniform filter-
width additional SGS-terms emerge. These SGS-terms are generally referred to as
commutator errors [46, 51, 54]. For a field f commutator errors are given by,

Ci(f) = 9;f - 0;f. (8.1)

Commutator errors C; originate from the fact for a non-uniform filter-width filtering
~ and differentiation 9; cannot be interchanged.

The commutator error problem has been investigated in chapters 3 and 4. In
chapter 3 we investigated the commutator error based on the relation [46, 51, 54];

Cj ~ (8;8)AN T, (8.2)

where N denotes the order of a filter (3.11). This relation suggests that the size
of the commutator error is dependent on %) the gradient of the filter-width 9;A
ii) the filter-width and iii) the order N of the filter. Using a priori analysis we
have verified the dependence on 9;A and showed that for standard, second order
filters, such as the top-hat and Gaussian filter, as well as for skewed, first order
filters, commutator effects can become dynamically important if filter-width non-
uniformities are large.

Higher order filters

The scaling of the commutator error with the order of the filter suggests that com-
mutator errors can be made arbitrary small and safely neglected if an appropriate
higher order filter is used. This observation has been made in a number of pub-
lications [54, 133] and has led to a considerable interest into the construction of
suitable higher order filters [64, 87, 133]. However, in chapter 3 it was shown that
this observation is incomplete.

Commutator errors become dynamically less important if higher order filters are
used. However, commutator errors cannot be neglected merely by adopting an
appropriate higher order filter. This is because the SGS-stress 7;; also scales with
the order of the filter as 7;; ~ AN . Hence the relevant SGS-flux 0;7;j shows similar
scaling behavior as the commutator error: O((9;A)AN~1)| with a sub-dominant
scaling of O(A™) in case 9;A = 0. In chapter 3 the scaling with the order of the
filter for both the SGS-flux 0;7;; and the commutator error C;(u;uj) was shown
analytically and subsequently verified a-priori using DNS-data of turbulent mixing
flow. Because both the SGS-stress and the commutator error scale with the order
of the filter, the only independent control over the commutator error is through

;A
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Lagrangian interpretation of commutator errors

A new approach towards commutator errors and possible modeling of commutator
effects was presented in chapter 4. In this chapter the Lagrangian behavior of
the commutator error was introduced. This Lagrangian behavior suggests that
commutator error effects only occur if u;0;A # 0, i.e., commutator effects can be
expected only if the local flow is directed towards the filter-width non-uniformity.
Moreover, we motivated that resolved kinetic energy is either created or dissipated
through the commutator error if along a flow-path the filter-width is increased or
decreased, respectively. Subsequently, a model for the transport of resolved kinetic
energy by the commutator error was formulated.

In the formulation of this model for the transport of resolved kinetic energy consid-
erable effort was put in extending the Lagrangian model for skewed (a-symmetric)
filters. In case skewed filters are used the commutator error displays both diffu-
sive and dispersive behavior. This is opposed to symmetric filters in which case
only diffusive effects arise. The proposed model was verified using DNS-data of
temporal mixing. An almost perfect correlation between the model and the actual
transport of resolved kinetic energy through the commutator error was observed.
The Lagrangian interpretation of the commutator error suggests to model commu-
tator errors using the material derivative of the filter-width D:A = (0¢ + u;0;)A
and a subsequent model for the commutator error C;(u;u;) was formulated (4.26).

Modeling the commutator error

At the end of chapter 4 three different models for the commutator error C;(uju;)
have been investigated: the similarity, the gradient and the Lagrangian commuta-
tor error model. The first two models resemble the similarity and gradient model
for the SGS-stress, while the third model directly follows from the Lagrangian be-
havior of the commutator error. Results of a-priori testing of these models showed
that the similarity and gradient commutator error model correlate well with the
actual commutator error C;j(u;uj). This is more or less expected as high correla-
tion is also observed for similarity type models for the SGS-stress. The correlation
of the Lagrangian model is somewhat lower in case of symmetric filters, but high
correlation is observed in case skewed filters are used. However, high correlation
a-priori does not necessarily imply that a model accurately captures the proper
dynamics in an LES. Therefore future a-posteriori investigations in which the ef-
fectiveness of these commutator error models is investigated are highly needed to
provide decisive answers.
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Computational stress tensor for compressible flow

In chapter 5 the computational turbulent stress tensor &;; for compressible flow
was studied,

& = P — Dy, (8.3)

The computational turbulent stress tensor ¢;; differs from the SGS-stress pr;; (2.31)
because of the additional filter is applied to the resolved convective flux pu;;.
This additional filter arises from the filtering effect of the coarse grid discretization
[83, 106]. The main observation made in this chapter is that the computational
SGS-stress for compressible flow &;; can be decomposed into two different parts,

&ij = pluguy — uitty) + p'u;. (8.4)

The first part is primarily associated with the fluctuating velocity ! = u; — u;,
while the second part is associated with the fluctuating density p’ = p — p.

In the incompressible limit the density fluctuating part p’u;u; is negligible as p’ ~ 0
in this limit. However, density fluctuations become more apparent with increasing
Mach number and the part associated with the fluctuating density becomes dy-
namically important with increasing Mach number. Using DNS-data of turbulent
flow at various Mach numbers [144] we could observe this dependence of the density
fluctuating part on the Mach number. The velocity fluctuating part was almost
unaffected by a change in Mach number. It was observed that for supersonic flow
(M = 1.2) the relative magnitude of the density fluctuating part could be up to
25% of that of the velocity fluctuating part.

Variational Multi-scale approach to LES

In chapter 6 an alternative formulation of LES based on the variational multi-scale
approach to LES (VMS-LES) was introduced. This approach to LES exploits
the weak formulation of discretizations such as DG-FEM as well as the inherent
projection onto the basis-functions used in this type of discretizations. VMS-
LES was originally introduced in [24, 69] for incompressible flow using Fourier-
spectral basis-functions. In chapter 6 a VMS-LES formulation for compressible
flow was given using general basis-functions. The resulting VMS-LES formulation
for compressible flow was shown to resemble the well known compressible LES-
formulations [88, 99, 137]. The use of general basis-functions resulted in additional
SGS-terms which were shown to be directly related to the commutator error C;.
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Figure 8.1: Geometry of the delta-wing. For the particular wing considered here
A =175 0=230° and t/c = 0.024.

Effect of numerical viscosity in LES

In chapter 7 the effect of numerical viscosity in an LES was studied. For stability
reasons numerical methods such as DG-FEM incorporate viscous or stabilization
terms. These terms can affect the effectiveness of the SGS-modeling in an LES
[2]. In particular, in chapter 7 we investigated how the numerical viscosity of a
DG-FEM affects the effectiveness of the Smagorinsky SGS-model. A database was
created containing a large number of LES using different resolutions, numerical
viscosities and Smagorinsky coefficients ¢;. We could a-posteriori determine opti-
mal Smagorinsky coefficients ¢} and show that with increasing numerical viscosity
other, smaller Smagorinsky coefficients yield a better prediction for the decay of re-
solved kinetic energy for a given resolution. Moreover, in some cases the numerical
viscosity could be so dominant that the analysis suggests to abandon SGS-modeling
altogether. Finally, it was shown that the best prediction was possible in case of
minimal numerical viscosity in which case the kinetic energy is dissipated through
the molecular dissipation and the SGS-model.

8.2 Outlook of LES for complex vortex dominated flows

In this section results are shown of LES for the flow over a delta-wing at high
Reynolds number. Based on the experience gained with these simulations we assess
the feasibility of LES for such flows. In particular, in this section results are
presented of the flow over an 75°-swept delta-wing as illustrated in figure 8.1 at an
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Figure 8.2: Snapshot of the flow over a delta-wing at Re. = 100,000. The slice
indicates the refined grid at /¢ = 0.6 and the coloring of the streamlines indicates
the vorticity.

angle of attack of 12.5° with Re. = 100,000, M = 0.3 and Pr = 0.72 [104, 105].
Here Re. denotes the Reynolds number based on the chord length of the wing
[97, 105]. A Smagorinsky SGS-model is used for which the Smagorinsky constant
is set to ¢ = 0.075. The simulations are performed using the program HEXADAP
that employs the fully implicit Space-Time DG-FEM (STDG-FEM), see [75, 130]
for details. HEXADAP is the second order accurate flow solver developed by the
Netherlands Aerospace Institute. An illustration of the resulting flow is given in
figure 8.2. We emphasize that the main goal of the present study is to discuss the
technical feasibility of LES using DG-FEM. Hence, we will not provide extensive
comparison with for example experimental results and also we do not touch upon
the (in)accuracy of the SGS-modeling for this flow.

Next we will briefly introduce the STDG-FEM algorithm and in particular discuss
the pseudo-time stepping procedure (paragraph 8.2.1) [74, 76]. The efficiency of the
pseudo-time stepping procedure is of great importance for the total performance
of the STDG-FEM algorithm. Subsequently results are presented of simulations of
the flow over the delta-wing (paragraph 8.2.2). At the end of this section we will
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discuss the main findings (paragraph 8.2.3).

8.2.1 Efficient pseudo-time stepping in Space-Time DG-FEM

Below we will discuss one important component of the STDG-FEM algorithm;
the pseudo-time stepping algorithm. STDG-FEM solves the equations directly in
four dimensions at once with time as the fourth dimensions and for each time
step [tn,tn+1] @ system of non-linear algebraic equations needs to be solved for the
expansion coefficient U™t see [75, 128, 130],

LU, U™ = 0. (8.5)

Here U™ and U™t denote the vector expansion coefficients for the space-time slabs
Q X [tn—1,tn] and Q X [t,, tn41], respectively. In (8.5) the expansion coefficients
U" are known and the expansion coeflicients U™ are the unknowns. The full
definition of (8.5) can be found in [75]. Notice that (8.5) resembles (2.77) with
the exception that in STDG-FEM the part associated with the evolution in time
is included in the residuals.

The performance of the SATDG—FEM algorithm is largely determined by its ability
to efficiently determine U™T!. Several strategies are available and we iteratively
solve (8.5) in pseudo-time 7 > 0,

dﬂ(7—> 1 & TR
= +E£(U(T),U ) = 0, (8.6)

where in the steady state U"*! = U. For the pseudo-time stepping explicit, low-
storage Runge Kutta time stepping methods are used. Alternatively, one could
solve (8.5) using Newton iterations. However, this requires the storage and com-
putation of a Jacobian matrix which is problematic for large-scale problems. In the
steady state £ = 0, however, in practice it is not required to reach the steady state
exactly and one proceeds to the next implicit time step [t,11,tn12] after a prede-
termined number of pseudo-time steps or as soon as the residuals are sufficiently
reduced.

The performance of the total algorithm is greatly affected by its ability to reduce
these residuals and the use of suitable Runge-Kutta pseudo-time stepping methods
is of critical importance. For the simulations presented in this section use is made
of an alternating EXI&EXV scheme. This scheme combines two Runge-Kutta
methods, the EXI- and the EXV-scheme. The EXI (EXplicit-Inviscid) scheme is
a five stage Runge-Kutta method with a Melson correction [89] which has been
optimized for the Euler equations [130]. Due to its time step restrictions, the
performance of the EXI scheme for the Navier-Stokes equations is poor. The
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Figure 8.3: Lg-norm of the residual £ when using the EXI scheme (dashed)
and the alternating EXI&EXV scheme (solid) for pseudo-time stepping. Several
implicit time steps At = 0.001 are shown using 100 pseudo-time steps each and
the grid contains approximately 3.5 x 10° elements.

EXV (EXplicit-Viscous) scheme is a four stage method introduced in [76] and
specifically constructed to allow large time steps for parabolic problems [74, 76].
In the alternating EXI&EXV scheme we switch between EXI and EXV based on
the cell Reynolds number, see [73, 74] for details. The EXI scheme is used for those
elements in which convective time step restrictions are most restrictive, while the
EXYV scheme is used for those elements where viscous time step restrictions are
most restrictive. The ability of the pseudo-time stepping algorithm to reduce the
residuals was considerably improved with the use of the alternating EXI&EXV
scheme.

The effectiveness with which the alternating EXI&EXV scheme can reduce the
residuals in comparison with the EXI scheme is illustrated in figure 8.3. In this
figure the Lo-norm eq of the residuals £ is shown as a function of the number
of pseudo-time steps. In particular g is shown for a number of implicit physical
time steps At = 0.001 each using 100 pseudo-time steps to solve the non-linear
algebraic system (8.5) for a grid that contains approximately 3.5 x 10° elements.
In figure 8.3 it can be observed that the EXI scheme is only marginally capable
of reducing the residuals in 100 pseudo-time steps. The alternating EXI&EXV
scheme is considerably more effective in reducing the residuals, greatly increasing
the performance of the STDG-FEM algorithm.

Next results are presented of two large-scale simulations of the flow over a delta-
wing at Re. = 100, 000.
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Simulation A ‘ Simulation B
Reynolds number Re. 100,000
Mach number M 0.3
Smagorinsky constant c 0.075
Time step At 0.05
Pseudo time stepping method EXI&EXV
Number of pseudo time steps per time step At 100
Minimal element length 0.005 0.001
Maximum number of elements 3.9 x 10° 1.9 x 109
Wall clock hours per time step At 4 15

Table 8.1: Simulation details for the high resolution simulations. The wall clock
hours are based on four processors on a SGI-Altix 3700 system.

8.2.2 Large-Eddy simulations of the flow over a delta-wing

Two LES of the flow over a delta-wing have been performed and results of these
simulations are discussed below. In particular we assess the resolution requirements
needed to capture the main vortical flow features above the wing. These provide
guidelines along which we assess the feasibility of LES using DG-FEM for this
particular flow in subsection 8.2.3.

Two simulations have been carried out and in both simulations the grid is refined
based on the vorticity and the grid quality. However, the two simulations differ
in terms of the typical element-size h. For the first simulation the smallest ele-
ments have a typical element-size of A, = 0.005, while for the second simulation
hmin = 0.001. We will refer to the simulations as simulation A and simulation B,
respectively. The main details of both simulations are gathered in table 8.1 and
in figure 8.4 an overview is given of both the grid and the vortical structures in
this flow. In this figure one can clearly observe the refinement of the grid near the
vortex core.

The complexity of the flow over a delta-wing is mainly due many the different flow
regimes that are observed in this flow. Above the wing surface we can distinguish
between: i) the boundary layer near the wing surface, i) the primary vortices
coming from the leading edge, iii) the secondary vortices which are formed near
the leading edge in between the boundary layer and the leading edge vortex [97].
For a thorough review see [63, 97, 105]. In figure 8.4 an illustration is given of the
adapted grid for both simulations and it is indicated which flow phenomena are
captured in each simulation.

The secondary vortex near the leading edge is believed to play an important role in
the breakdown of the primary vortex [105]. Hence, capturing this secondary vortex
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Figure 8.4: Snapshots of the delta-wing facing the trailing edge with a) hyin =
0.005 (Simulation A) and b) hyin = 0.001 (Simulation B). Two slices are shown
one illustrating the adapted grid and one showing the contours of the vorticity
magnitude. The grid-slice corresponds to /¢ = 0.6 while the contour-slice corre-
spond to x/c = 0.9. The labels point to the main flow features captured in these
simulations.



8.2. Outlook of LES for complex vortex dominated flows 161

is critical. As can be observed in figure 8.4(a) no secondary vortex is observed
near the leading edge in simulation A. The minimal grid-distance in simulation B
is chosen such that it should be able to capture the secondary vortex and in figure
8.4(b) we clearly observe this secondary vortex. However, the actual breakdown
of the vortex is not observed. This can be due to the inaccurate SGS-modeling,
insufficient resolution, insufficient pseudo-time steps per implicit time step etc.

Answers to these questions can only be given based on multiple realizations of this
flow. This can only be achieved if a simulation can be performed within a workable
turn-around time. Based on experiences gained through these two simulations we
will next assess what is required before a workable turn-around time is possible.

8.2.3 Discussion of feasibility of large-scale LES of a flow over a
3D delta-wing

Of the two simulations discussed above only simulation B was able to capture the
essential flow-features above the delta-wing. Hence we will base our discussion
regarding the feasibility of LES using DG-FEM for this particular flow solely on
observations made from simulation B. In fact we will determine a turn-around
time for this simulation and then discuss which speedup is required to achieve a
workable turn-around time.

Presently for a proper assessment of the accuracy of a flow simulation multiple
simulations are required adopting various grid resolutions, adaptation criteria and
SGS-model coefficients. For unsteady flow, as considered here, results need to be
averaged over long time-intervals to get proper statistics. Around 100 time steps
appear to be required which corresponds to 10 individual vortex sheddings. Hence
including a transition period to steady state at least 250 time steps are required.
Based on the wall clock hours per time step as given in table 8.1 such a simulation
would have a minimal turn around time of about 5 months on an SGI-Altix 3700
system using four processors.

One weekend (60 hours) is considered to be a workable turn-around time. Hence
a speedup by a factor of about 60 is required. This can be achieved in a number
of ways. First of all use can be made of more powerful computers. Secondly, we
expect that within the near future considerable improvements can be made in the
pseudo-time stepping algorithm using, e.g., multi-grid procedures [73, 132].

When using more powerful computers to gain a factor of 60 in performance,
presently, one relies on the use of multiple processors [120]. Earlier studies have
shown that the parallel speedup of HEXADAP was reasonable [13]. Gaining a fac-
tor of 60, however, would require the use of 250-300 processors. This is possible,
however it is not certain whether a reasonable speedup is achieved when using such
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a large amount of processors. Hence we will also have to rely on improvements in
the algorithm.

The performance of the STDG-FEM algorithm is largely determined by the abil-
ity of the algorithm to effectively reduce the residuals by means of pseudo-time
stepping. Already considerable improvements are made by using the alternating
EXI&EXV scheme instead of the EXI scheme. Another improvement appear to
results from the use of multi-grid techniques. These have recently become available
for STDG-FEM [73, 132]. An expected speedup up to a factor of 4 may be possible
and is expected in the near future. In the most optimistic case this would require
the use of 60-80 processors on a similar system as the SGI Altix 3700. This is
clearly feasible considering present day computing equipment. Still, however, con-
siderable effort needs to be put into validating and improving the SGS-modeling
before LES of this type of flows using DG-FEM with locally refined meshes can be
performed with sufficient confidence.



Appendix A

Large-eddy template for the
Energy equation

The part of the Navier-Stokes operator corresponding to the energy equation is
given by,

Brs(W,U) = (W, ]atpe) )

- (ajW4(7pUje = 3(v = Dpujurur — wioy; + qj)x

- (W4nj”ypUje — (v = D) pujupuy, — wioi; + qj>aK, (A.1)

which is equivalent to,

BIS (W, 0) = (Wa|oipe)

8jW4"ypUj€ — 2(v — 1)puyupuy, — woy; + @j)K

— (W4nj"ypuje — %(fy — 1)pujupuy — uioi; + qj)aK. (A.2)

The energy is equation is non-linear, but can be written in terms of three variations
when expressed in terms of the variables V = [p, u;, €], i.e.

By (W, U) = B (W,V) (A.3)
3

= B(W,V) Y BITE (W, V, V). (Ad)
k=1
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The resulting expression is given by,

BZnergy (W, U)
- (W),

(W |y (0t + pitye” + pulle + pue”)

—%(’y — 1)(pﬂjﬂkﬂk + Qp&’jﬂku’k’ + pu;’ﬂkak

~ ", ", 115 i
+pujuguy + 2puuyug + puluguy)

—U;Gij — Uibij — ul'Gij — ul'Gij + 5 + G + a])z(
— <W4nj"y(pﬁj5+ pﬁjeﬂ + pu}”é+ pu}'e”)
— (v — 1) (pUjlintix + 2pUjUguy, + puf iyl
~ ", n "1~ i
+pujuguy + 2puugiy + pujuguy)

UiGij + UiGij + uf Gij + u i+ 4j + 45 + dj)aK’ (A.5)
where 7;; and §; are the viscous and heat flux evaluated using resolved variables
U, 6;; is the first variation of the viscous flux, which is defined in (6.58), and finally

¢; and ¢; are the first and second variation of the heat flux, respectively,

0j(e" —uguy), d4; = 2 93wy (A.6)

4G = RePr ™’ " RePr

In order to express B8 in terms of the resolved variables, i.e. B;"® (W, U)
we have to decompose the density p into p+ p’ for all the non-linear terms puje
and pujuiug. Then we arrive at,
By ey (W, U)
— BIOE(W,T)

- <5jW4 ‘v(p’ﬂjg+ puje” + puje + puje’)

—1(y = D (p'ujunur + 2ptijugu) + pu gy,

~ a0, ", 15 ", 1, 1
+pujuguy + 2puiugu + puljuyuy)

—~ . 1< 7B ry Ty
—UiOij — U; O35 — U; 045 + ¢ + qj)K

- (ij ‘7(’) i€ + puje” + puje + puffe”)
=5 (7 = D)0/t + 2pu5upuy, + pu Uy,
P, + 2T+ pu )

+u;045 + u;’&l‘j + u;’dij +q;+q; + dj)aK- (A.7)
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Samenvatting

Dit proefschrift levert een bijdrage aan de toepassing van Large-Eddy Simulatie
(LES) op niet-uniforme en vervormende grids. Deze uitbreiding maakt het mogelijk
om complexe, turbulente stromingen, zoals die voorkomen in industri€le toepassin-
gen, het weer en de luchtvaart, op een efficiénte manier te simuleren middels LES.
In een LES worden alleen stromingsverschijnselen (eddies) met een typische lengte
groter dan de filterbreedte A gesimuleerd. De effecten van kleinschalige stro-
mingsverschijnselen worden gemodelleerd door middel van Sub-Grid-Scale (SGS)-
modellen. Doordat alleen de grootschalige eddies mee worden genomen in de sim-
ulatie, vereist een LES veel minder computercapaciteit dan een Directe Numerieke
Simulatie (DNS), waarin alle stromingsverschijnselen worden meegenomen. Voor
de simulaties, waarvan resultaten worden gepresenteerd in dit proefschrift, is ge-
bruik gemaakt van de Discontinue Galerkin Eindige Elementen Methode (DG-
EEM). Dit type discretisatie kan op een efficiénte manier omgaan met niet-uniforme
en vervormende grids.

Het onderzoek wat gepresenteerd wordt in dit proefschrift kan opgedeeld worden
in vier verschillende onderwerpen. Deze worden hieronder samengevat.

e Het eerste onderwerp is de commuteer fout die ontstaat wanneer in een LES
gebruik wordt gemaakt van een niet uniforme filterbreedte A(x,t). Een fil-
terbreedte, die athankelijk is van ruimte en tijd, wordt bij voorkeur gebruikt
in LES van complexe, turbulente stromingen. We hebben de relatieve grootte
van de commuteer fout bepaald en vergeleken met de turbulente SGS-termen
en het Lagrangiaanse gedrag van de commuteer fout bestudeerd.

De grootte van de commuteer fout is afhankelijk van de filterbreedte A, de
gradiént van de filterbreedte ;A en de orde van de filter operator. De grootte
van de commuteer fout is analytisch bepaald en a-priori geverifieerd, waar-
bij gebruik is gemaakt van turbulente data verkregen door middel van DNS.
Wanneer de filterbreedte voldoende niet uniform is, dan kan de commuteer
fout niet verwaarloosd worden. De grootte van de commuteer fout kan ook
beinvloed worden door middel van de orde van de filter operator. Dit kan
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echter niet onafhankelijk van de turbulente spannings tensor. Beide termen
worden op eenzelfde manier beinvloed wanneer de orde van de filter wordt
verhoogd of verlaagd.

Het Lagrangiaanse gedrag van de commuteer fout houdt in dat dynamische
effecten van de commuteer fout alleen een rol spelen wanneer het locale stro-
mingsveld wijst in de richting van de niet-uniforme filterbreedte. Dit gedrag is
a-priori onderzocht voor de transport van kinetische energie. Een bijna per-
fecte correlatie wordt waargenomen tussen de Lagrangiaanse parameterisatie
en het transport van de kinetische energie door de commuteer fout. Daar-
naast introduceren we een model gebaseerd op dit Lagrangiaanse gedrag, dat
wordt vergeleken met andere modellen voor de commuteer fout.

Het tweede onderwerp dat wordt behandeld is de numerieke turbulente span-
nings tensor voor compressibele stromingen. De numerieke turbulente span-
nings tensor onstaat wanneer het filterende effect van de discretisatie op
het LES-grid wordt meegenomen in de LES-vergelijkingen. We laten zien
dat de numerieke turbulente spannings tensor voor compressibele stromingen
opgedeeld kan worden in twee stukken. Eén deel wat voornamelijk beinvloed
wordt door het kleinschalige snelheidsveld en een ander deel dat voornamelijk
beinvloed wordt door dichtheids fluctuaties. Voor supersone stromingen laten
we a-priori zien dat het deel wat afhankelijk is van de fluctuerende dichtheid
een niet te verwaarlozen bijdrage geeft aan de totale numerieke turbulente
spannings tensor.

Het derde onderwerp wat wordt behandelt is een alternatieve formulering
van de LES-vergelijkingen gebaseerd op de Variational-Multi-Scale benader-
ing van LES (VMS-LES). We breiden deze methode uit naar compressibele
stromingen en maken daarbij gebruik van algemene basis-functies. Polyno-
miale basis-functies die typisch worden gebruikt in DG-EEM dienen hierbij
als voorbeeld. Eerdere VMS-LES formuleringen zijn toepasbaar voor in-
compressibele stromingen en maken gebruik van basis-functies die gebruikt
worden in spectrale methoden. We tonen aan dat de VMS-LES formulering
voor compressibele stromingen overeenkomt met de Favre-gefilterde Navier-
Stokes vergelijkingen. Het gebruik van niet spectrale basis-functies leidt tot
extra SGS-termen die overeenkomen met de commuteer fout.

Als vierde wordt het effect van numerieke dissipatie op de LES modellering
bestudeerd. Hierbij wordt gebruik gemaakt van een database van LES waaruit
“optimale” Smagorinsky constanten worden bepaald. Deze optimale coéf-
ficiénten komen overeen met de Smagorinsky constante waarvoor een a-
postiori fout voor de kinetische energie minimaal is, gegeven de resolutie
van het grid en de numerieke dissipatie. Aangetoond wordt dat, afhanke-
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lijk van de hoeveelheid numerieke dissipatie, andere Smagorinsky constanten
gebruikt moeten worden voor een optimale benadering van de kinetische en-
ergie. De meest optimale benadering van de kinetische energie kan worden
behaald wanneer deze voornamelijk gedissipeerd wordt door de moleculaire
viscositeit en het SGS-model.

Als laatste tonen we resultaten van LES gebruikmakend van DG-EEM op niet
uniforme en vervormende grids voor de stroming over een delta vleugel bij Re. =
100.000. Met deze simulaties beoordelen we de haalbaarheid van LES op niet-
uniforme en vervormende grids gebruikmakend van DG-EEM. De resultaten laten
zien dat dit technisch mogelijk is. Echter gegeven hedendaagse computercapaciteiten
is een goede beoordeling van de SGS-modellering niet mogelijk. Hiervoor dienen
eerst de prestaties van de DG-EEM te worden verbeterd.
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Summary

This thesis contributes to the development of the Large-Eddy Simulation (LES)
technique on non-uniform and adaptive grids. This extension allows to efficiently
simulate complex, turbulent flow problems as typically encountered in industry,
weather prediction and aerodynamics. In an LES only flow features with a typical
length-scale larger than the filter-width A are computed. The effect of the small or
unresolved flow features is incorporated through Sub-Grid-Scale (SGS)-models. By
only computing the larger flow features the computing requirements for a LES are
considerably reduced compared to those of a Direct Numerical Simulation (DNS)
in which all flow features are computed. For the actual simulations presented
in this thesis use is made of the Discontinuous Galerkin Finite Element Method
(DG-FEM). This type of discretization can efficiently deal with non-uniform and
adaptive grids.

The research in this thesis can be divided into four different topics which are
summarized below.

e The first topic is the commutator error that arises when a non-uniform filter-

width A(x,t) depending on space and time is used. Such a non-uniform
filter-width is preferably used in LES of turbulent flow in complex domains.
Specifically we studied the relative magnitude of the commutator error com-
pared to the turbulent terms and its Lagrangian behavior.
The magnitude of the commutator error is dependent on the filter-width A,
the gradient of the filter-width 9;A and the order of the filter operator. This
is shown analytically and verified a-priori using turbulent data acquired by
means of DNS. It is observed that when the filter-width non-uniformities
OA/Ox; are large that then the commutator error can no longer be neglected
compared to other SGS-terms. Controlling the magnitude of the commutator
error through the order of the filter is also possible. However higher-order
filters do not allow independent control of the relative magnitude of the com-
mutator error compared to the SGS-stress as both terms decrease in a similar
way with increasing order of the filter.
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The Lagrangian interpretation of the commutator error suggests that signifi-
cant dynamics effects due to the commutator arise only if the local flow-field
is in the direction of the filter-width non-uniformity. A-priori verification is
given of this behavior in terms of the transport of resolved kinetic energy.
An almost prefect correlation is achieved between the proposed Lagrangian
parameterization and the actual transport of resolved kinetic energy through
the commutator error. Finally, a model based on the Lagrangian behavior is
formulated and compared with other commutator error models.

e The second topic concerns the computational turbulent stress tensor for com-
pressible flow. The computational turbulent stress tensor arises when the
filtering effect associated with the coarse-grid discretization is incorporated
into the large-eddy equations. It is shown that the computational turbulent
stress tensor for compressible flow can be decomposed into two parts, one
part associated with fluctuating velocity and another associated with the
fluctuating density. At supersonic Mach number it is a-priori shown that
the density fluctuating part contributes considerably to the computational
turbulent stress tensor and separate modeling of the fluctuating density is
required.

e The third topic involves an alternative formulation of the large-eddy equa-
tions based on the Variational-Multi Scale approach to LES (VMS-LES).
We extend earlier VMS-LES formulations to compressible flow and general
basis-functions. The polynomial basis-functions typically encountered in DG-
FEM are used as an illustrative example. Earlier VMS-LES formulations
were restricted to incompressible flow and Fourier-spectral basis-functions.
The compressible VMS-LES formulation resembles the Favre-filtered Navier-
Stokes equations. The use of basis-functions other than Fourier-spectral
basis-functions is shown to lead to additional SGS-terms in the VMS-LES
formulation which resemble the commutator error SGS-terms.

e The fourth topic is a study into the effect of numerical dissipation on LES. Us-
ing a data-base approach “optimal” Smagorinsky constants are determined.
These optimal coefficients correspond to minimal a-posteriori errors for the
resolved kinetic energy at given resolution and numerical dissipation. De-
pending on the amount of numerical dissipation introduced by the discretiza-
tion different Smagorinsky constants lead to an optimal prediction of the
decay of resolved kinetic energy. The most accurate prediction of the re-
solved kinetic energy could be arrived at in case the kinetic energy is mainly
dissipated through the resolved molecular viscous flux and the SGS-model.

Finally, results are included of a LES using DG-FEM on a non-uniform and adap-
tive grid of the flow over a delta wing with a sharp leading edge at Re. = 100.000.
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These results are included to assess the feasibility of LES on locally refined meshes
using DG-FEM and show that it is technically possible for this type of flow. How-
ever, proper assessment of e.g. the SGS-modeling is not possible. The first bot-
tleneck that needs to be confronted concerns a performance issue of DG-FEM on
presently available computing infrastructure.
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